摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

Ethyl 3-(4-methylphenyl)sulfonyl-2-oxobenzimidazole-1-carboxylate | 161468-86-6

中文名称
——
中文别名
——
英文名称
Ethyl 3-(4-methylphenyl)sulfonyl-2-oxobenzimidazole-1-carboxylate
英文别名
——
Ethyl 3-(4-methylphenyl)sulfonyl-2-oxobenzimidazole-1-carboxylate化学式
CAS
161468-86-6
化学式
C17H16N2O5S
mdl
——
分子量
360.39
InChiKey
YTXVKNGPGKNIAX-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3
  • 重原子数:
    25
  • 可旋转键数:
    4
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.18
  • 拓扑面积:
    92.4
  • 氢给体数:
    0
  • 氢受体数:
    5

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    Ethyl 3-(4-methylphenyl)sulfonyl-2-oxobenzimidazole-1-carboxylate异丙胺 作用下, 以 四氢呋喃 为溶剂, 以95%的产率得到2,3-dihydro-1-(4-tolylsulfonyl)-1H-benzimidazol-2-one
    参考文献:
    名称:
    Regiospecific Functionalization of 1,3-Dihydro-2H-benzimidazol-2-one and Structurally Related Cyclic Urea Derivatives
    摘要:
    Methods for selectively protecting one of the degenerate nitrogen atoms of the cyclic urea derivatives 1,3-dihydro-2H-benzimidazol-2-one (6a), 1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (11), 1,3-dihydro-2H-imidazo[4,5-b]quinolin-2-ones (20), 1,3-dihydro-2H-imidazo[4,5-c]pyridin-2-one (22), and 1,3-dihydro-4-phenyl-2H-imidazol-2-one (27) were developed. Heating these cyclic ureas with ethyl 2-pyridyl carbonate in the presence of a base in CH3CN at reflux or DMF at 100 degrees C cleanly provided the monoethoxycarbonyl derivatives 7a, 12, 21, 23, and 28, respectively. Alternatively, treatment of 6a with an excess of diethyl pyrocarbonate or di-tert-butyl dicarbonate afforded the bis-alkoxycarbonyl derivatives 8a and 8b, respectively, which underwent disproportionation to 7a and 7b upon heating with 1 mol equiv of 6a and K2CO3 in CH3CN at reflux. The regiochemistry of the introduction of alkoxycarbonyl groups to benzimidazol-2-one derivatives was not significantly influenced by an electron-withdrawing (CF3, 6b) or an electron-donating (OCH3, 6c) substituent at C-5 of the heterocyclic ring. However, the reaction was found to be sensitive to steric factors since a chlorine substituent ortho to one of the urea N atoms (6e) completely directed the alkoxycarbonyl moiety to the less sterically encumbered N atom, affording a single product (7f, 7g). Alkylation of 7a-g proceeded efficiently to provide products 10a-10ag after removal of the protecting group. Halogenation of monoprotected benzimidazol-2-one 7a occurred regiospecifically to give the monohalo derivatives 7h, 7i, and 7k, the identity of which were readily established from the characteristic chemical shift and spin coupling pattern in their 1H NMR spectra. A protecting group interchange strategy that took advantage of the distinctive chemical reactivities of the EtO(2)C and t-BuO(2)C protecting groups toward isopropylamine was developed that provided access to the isomerically substituted series of monohalo, mono-N-alkylated benzimidazol-2-ones 71 and 7m. The efficient derivatization of the unprotected N atom of these monoprotected cyclic urea derivatives was accomplished by treating with activated and unactivated halides in the. presence of K2CO3 or exposure to alcohols under Mitsunobu conditions. In several cases, mixtures of O- and N-alkylated products were produced which were readily separated by chromatography. Alkylation of 7h with activated halides, using K2CO3 in CH3CN at reflux, occurred without protecting group equilibration; however, a mixture of isomeric alkylated products was obtained when 7h was heated at 110 degrees C in DMF with cyclohexylmethyl bromide in the presence of K2CO3 as the base. Derivatization of 7h under Mitsunobu reaction conditions proceeded with retention of the topological substituent relationships. Subsequent removal of the alkoxycarbonyl moiety afforded monoalkylated cyclic urea derivatives.
    DOI:
    10.1021/jo00111a014
  • 作为产物:
    参考文献:
    名称:
    Regiospecific Functionalization of 1,3-Dihydro-2H-benzimidazol-2-one and Structurally Related Cyclic Urea Derivatives
    摘要:
    Methods for selectively protecting one of the degenerate nitrogen atoms of the cyclic urea derivatives 1,3-dihydro-2H-benzimidazol-2-one (6a), 1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (11), 1,3-dihydro-2H-imidazo[4,5-b]quinolin-2-ones (20), 1,3-dihydro-2H-imidazo[4,5-c]pyridin-2-one (22), and 1,3-dihydro-4-phenyl-2H-imidazol-2-one (27) were developed. Heating these cyclic ureas with ethyl 2-pyridyl carbonate in the presence of a base in CH3CN at reflux or DMF at 100 degrees C cleanly provided the monoethoxycarbonyl derivatives 7a, 12, 21, 23, and 28, respectively. Alternatively, treatment of 6a with an excess of diethyl pyrocarbonate or di-tert-butyl dicarbonate afforded the bis-alkoxycarbonyl derivatives 8a and 8b, respectively, which underwent disproportionation to 7a and 7b upon heating with 1 mol equiv of 6a and K2CO3 in CH3CN at reflux. The regiochemistry of the introduction of alkoxycarbonyl groups to benzimidazol-2-one derivatives was not significantly influenced by an electron-withdrawing (CF3, 6b) or an electron-donating (OCH3, 6c) substituent at C-5 of the heterocyclic ring. However, the reaction was found to be sensitive to steric factors since a chlorine substituent ortho to one of the urea N atoms (6e) completely directed the alkoxycarbonyl moiety to the less sterically encumbered N atom, affording a single product (7f, 7g). Alkylation of 7a-g proceeded efficiently to provide products 10a-10ag after removal of the protecting group. Halogenation of monoprotected benzimidazol-2-one 7a occurred regiospecifically to give the monohalo derivatives 7h, 7i, and 7k, the identity of which were readily established from the characteristic chemical shift and spin coupling pattern in their 1H NMR spectra. A protecting group interchange strategy that took advantage of the distinctive chemical reactivities of the EtO(2)C and t-BuO(2)C protecting groups toward isopropylamine was developed that provided access to the isomerically substituted series of monohalo, mono-N-alkylated benzimidazol-2-ones 71 and 7m. The efficient derivatization of the unprotected N atom of these monoprotected cyclic urea derivatives was accomplished by treating with activated and unactivated halides in the. presence of K2CO3 or exposure to alcohols under Mitsunobu conditions. In several cases, mixtures of O- and N-alkylated products were produced which were readily separated by chromatography. Alkylation of 7h with activated halides, using K2CO3 in CH3CN at reflux, occurred without protecting group equilibration; however, a mixture of isomeric alkylated products was obtained when 7h was heated at 110 degrees C in DMF with cyclohexylmethyl bromide in the presence of K2CO3 as the base. Derivatization of 7h under Mitsunobu reaction conditions proceeded with retention of the topological substituent relationships. Subsequent removal of the alkoxycarbonyl moiety afforded monoalkylated cyclic urea derivatives.
    DOI:
    10.1021/jo00111a014
点击查看最新优质反应信息

文献信息

  • Regiospecific Functionalization of 1,3-Dihydro-2H-benzimidazol-2-one and Structurally Related Cyclic Urea Derivatives
    作者:Nicholas A. Meanwell、Sing Yuen Sit、Jinnian Gao、Henry S. Wong、Qi Gao、Denis R. St. Laurent、Neelakantan Balasubramanian
    DOI:10.1021/jo00111a014
    日期:1995.3
    Methods for selectively protecting one of the degenerate nitrogen atoms of the cyclic urea derivatives 1,3-dihydro-2H-benzimidazol-2-one (6a), 1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one (11), 1,3-dihydro-2H-imidazo[4,5-b]quinolin-2-ones (20), 1,3-dihydro-2H-imidazo[4,5-c]pyridin-2-one (22), and 1,3-dihydro-4-phenyl-2H-imidazol-2-one (27) were developed. Heating these cyclic ureas with ethyl 2-pyridyl carbonate in the presence of a base in CH3CN at reflux or DMF at 100 degrees C cleanly provided the monoethoxycarbonyl derivatives 7a, 12, 21, 23, and 28, respectively. Alternatively, treatment of 6a with an excess of diethyl pyrocarbonate or di-tert-butyl dicarbonate afforded the bis-alkoxycarbonyl derivatives 8a and 8b, respectively, which underwent disproportionation to 7a and 7b upon heating with 1 mol equiv of 6a and K2CO3 in CH3CN at reflux. The regiochemistry of the introduction of alkoxycarbonyl groups to benzimidazol-2-one derivatives was not significantly influenced by an electron-withdrawing (CF3, 6b) or an electron-donating (OCH3, 6c) substituent at C-5 of the heterocyclic ring. However, the reaction was found to be sensitive to steric factors since a chlorine substituent ortho to one of the urea N atoms (6e) completely directed the alkoxycarbonyl moiety to the less sterically encumbered N atom, affording a single product (7f, 7g). Alkylation of 7a-g proceeded efficiently to provide products 10a-10ag after removal of the protecting group. Halogenation of monoprotected benzimidazol-2-one 7a occurred regiospecifically to give the monohalo derivatives 7h, 7i, and 7k, the identity of which were readily established from the characteristic chemical shift and spin coupling pattern in their 1H NMR spectra. A protecting group interchange strategy that took advantage of the distinctive chemical reactivities of the EtO(2)C and t-BuO(2)C protecting groups toward isopropylamine was developed that provided access to the isomerically substituted series of monohalo, mono-N-alkylated benzimidazol-2-ones 71 and 7m. The efficient derivatization of the unprotected N atom of these monoprotected cyclic urea derivatives was accomplished by treating with activated and unactivated halides in the. presence of K2CO3 or exposure to alcohols under Mitsunobu conditions. In several cases, mixtures of O- and N-alkylated products were produced which were readily separated by chromatography. Alkylation of 7h with activated halides, using K2CO3 in CH3CN at reflux, occurred without protecting group equilibration; however, a mixture of isomeric alkylated products was obtained when 7h was heated at 110 degrees C in DMF with cyclohexylmethyl bromide in the presence of K2CO3 as the base. Derivatization of 7h under Mitsunobu reaction conditions proceeded with retention of the topological substituent relationships. Subsequent removal of the alkoxycarbonyl moiety afforded monoalkylated cyclic urea derivatives.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐