摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(R)-ethyl 3-phenylpentanoate | 251660-12-5

中文名称
——
中文别名
——
英文名称
(R)-ethyl 3-phenylpentanoate
英文别名
ethyl 3-phenylpentanoate;ethyl (R)-3-phenylpentanoate;ethyl (3R)-3-phenylpentanoate
(R)-ethyl 3-phenylpentanoate化学式
CAS
251660-12-5
化学式
C13H18O2
mdl
——
分子量
206.285
InChiKey
FLTSWHBPHUGGDZ-LLVKDONJSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.2
  • 重原子数:
    15
  • 可旋转键数:
    6
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.46
  • 拓扑面积:
    26.3
  • 氢给体数:
    0
  • 氢受体数:
    2

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    (R)-ethyl 3-phenylpentanoatesodium hydroxide 、 PPA 作用下, 以 乙醇 为溶剂, 反应 7.0h, 生成 (R)-3-ethyl-2,3-dihydro-1H-inden-1-one
    参考文献:
    名称:
    手性4-烷基-1,2,3,4-四氢喹啉的有效合成途径:( R)-4-乙基-1,2,3,4-四氢喹啉的对映选择性合成
    摘要:
    描述了一种非外消旋的手性4-烷基-1,2,3,4-四氢喹啉的有效合成途径。(4R)-4-乙基-1,2,3,4-四氢喹啉是通过有机铝促进的改性贝克曼重排反应得到的,其中涉及(3R)-3-乙基茚满-1-酮的肟磺酸盐。所需的旋光茚满酮是通过(E)-3-苯基戊-2-烯酸乙酯的不对称共轭还原而获得的。
    DOI:
    10.1016/s0957-4166(00)00468-7
  • 作为产物:
    描述:
    亚苯甲基丙二酸二乙酯 在 5R,6R-isopropylidenedioxy-4,4,7,7-tetraphenyl-1,3,2-dioxaph 、 copper(II) bis(trifluoromethanesulfonate) 、 lithium chloride 作用下, 以 正己烷二甲基亚砜甲苯 为溶剂, 反应 18.0h, 生成 (R)-ethyl 3-phenylpentanoate
    参考文献:
    名称:
    亚烷基丙二酸酯的不对称共轭加成
    摘要:
    将二烷基锌和三烷基铝试剂共轭加成到亚烷基丙二酸酯中,用0.5%的三氟甲磺酸铜作为催化剂。通过在0.5–1.0 mol%手性磷配体的存在下完成反应,可以使反应对映选择性。用TADDOL和2-萘基环己醇制备的配体可以达到73%的对映体过量(ee)。
    DOI:
    10.1016/s0957-4166(01)00196-3
点击查看最新优质反应信息

文献信息

  • Identification of an Esterase Isolated Using Metagenomic Technology which Displays an Unusual Substrate Scope and its Characterisation as an Enantioselective Biocatalyst
    作者:Declan P. Gavin、Edel J. Murphy、Aoife M. Foley、Ignacio Abreu Castilla、F. Jerry Reen、David F. Woods、Stuart G. Collins、Fergal O'Gara、Anita R. Maguire
    DOI:10.1002/adsc.201801691
    日期:2019.6.6
    Evaluation of an esterase annotated as 26D isolated from a marine metagenomic library is described. Esterase 26D was found to have a unique substrate scope, including synthetic transformations which could not be readily effected in a synthetically useful manner using commercially available enzymes. Esterase 26D was more selective towards substrates which had larger, more sterically demanding substituents
    描述了评估从海洋宏基因组库中分离为26D的酯酶的方法。发现酯酶26D具有独特的底物范围,包括使用市售酶不易以合成有用的方式实现的合成转化。酯酶26D是更具选择性的朝向具有较大的,更空间要求的取代基的底物(即,异-丙基或叔-丁基基团)上的β碳,这是相对于其中显示的偏好基板与空间位先前测试的市售的酶β-碳原子上的取代基(例如甲基)要求较低。
  • Highly Enantioselective Iridium-Catalyzed Hydrogenation of α,β-Unsaturated Esters
    作者:Jia-Qi Li、Xu Quan、Pher G. Andersson
    DOI:10.1002/chem.201200907
    日期:2012.8.20
    α,βUnsaturated esters have been employed as substrates in iridiumcatalyzed asymmetric hydrogenation. Full conversions and good to excellent enantioselectivities (up to 99 % ee) were obtained for a broad range of substrates with both aromatic‐ and aliphatic substituents on the prochiral carbon. The hydrogenated products are highly useful as building blocks in the synthesis of a variety of natural
    催化的不对称氢化反应中,α,β-不饱和酯已被用作底物。对于在手性碳上同时具有芳族和脂族取代基的多种底物,可实现完全转化和良好至优异的对映选择性(高达99%  ee)。氢化产物在多种天然产物和药物的合成中作为构建基非常有用。
  • A Theoretically-Guided Optimization of a New Family of Modular P,S-Ligands for Iridium-Catalyzed Hydrogenation of Minimally Functionalized Olefins
    作者:Jèssica Margalef、Xisco Caldentey、Erik A. Karlsson、Mercè Coll、Javier Mazuela、Oscar Pàmies、Montserrat Diéguez、Miquel A. Pericàs
    DOI:10.1002/chem.201402978
    日期:2014.9.15
    thioether‐phosphite/phosphinite ligands has been evaluated in the asymmetric iridium‐catalyzed hydrogenation of minimally functionalized olefins. The modular ligand design has been shown to be crucial in finding highly selective catalysts for each substrate. A DFT study of the transition state responsible for the enantiocontrol in the Ircatalyzed hydrogenation is also described and used for further optimization
    在最小功能化烯烃的不对称催化氢化中,已经评估了衍生自醚-亚磷酸酯/次亚膦酸配体的模块化配合物库。已经表明,模块化配体设计对于寻找每种底物的高选择性催化剂至关重要。DFT研究了在Ir催化的加氢过程中负责对映体控制的过渡态研究,并将其用于进一步优化关键的立体定义部分。对于多种底物(包括E-和Z),均获得了出色的对映选择性(对映体过量(ee)值高达99%)三取代和二取代的烯烃,α,β-不饱和烯酮,三和二取代的烯基硼酸酯以及具有三甲基取代基的烯烃。
  • Asymmetric Conjugate Reduction of α,β-Unsaturated Ketones and Esters with Chiral Rhodium(2,6-bisoxazolinylphenyl) Catalysts
    作者:Yoshinori Kanazawa、Yasunori Tsuchiya、Kazuki Kobayashi、Takushi Shiomi、Jun-ichi Itoh、Makoto Kikuchi、Yoshihiko Yamamoto、Hisao Nishiyama
    DOI:10.1002/chem.200500841
    日期:2006.1
    New asymmetric conjugate reduction of beta,beta-disubstituted alpha,beta-unsaturated ketones and esters was accomplished with alkoxylhydrosilanes in the presence of chiral rhodium(2,6-bisoxazolinylphenyl) complexes in high yields and high enantioselectivity. (E)-4-Phenyl-3-penten-2-one and (E)-4-phenyl-4-isopropyl-3-penten-2-one were readily reduced at 60 degrees C in 95 % ee and 98 % ee, respectively
    在手性(2,6-双恶唑啉基苯基)络合物的存在下,用烷氧基氢硅烷以高收率和高对映选择性完成了β,β-二取代的α,β-不饱和酮和酯的新的不对称共轭还原。(E)-4-苯基-3-戊烯-2-酮和(E)-4-苯基-4-异丙基-3-戊烯-2-酮在60°C下容易在95%ee和98%ee中还原分别以1 mol%的催化剂负载量进行。(EtO)2MeSiH被证明是最佳的氢供体选择。(E)-β-甲基肉桂酸叔丁酯和β-异丙基肉桂酸酯也可以还原为相应的二氢肉桂酸酯衍生物,直到ee高达98%。
  • Pyrrolidine‐Based P,O Ligands from Carbohydrates: Easily Accessible and Modular Ligands for the Ir‐Catalyzed Asymmetric Hydrogenation of Minimally Functionalized Olefins
    作者:Pilar Elías‐Rodríguez、Carlota Borràs、Ana T. Carmona、Jorge Faiges、Inmaculada Robina、Oscar Pàmies、Montserrat Diéguez
    DOI:10.1002/cctc.201801485
    日期:2018.12.7
    The potential of P,O‐iminosugar based ligands in the Ircatalyzed asymmetric hydrogenation of minimally functionalized olefins is presented. These new ligands were prepared from easily available carbohydrates (D‐mannose, D‐ribose and D‐arabinose). The stereochemical and polyfunctional diversity of carbohydrates allowed the modulation of the ligands, both from their electronic properties and the rigidity
    提出了基于P,O-亚基糖的配体在Ir催化的最小官能化烯烃的不对称加氢中的潜力。这些新的配体由容易获得的碳水化合物D-甘露糖D-核糖D-阿拉伯糖)制备。碳水化合物的立体化学和多官能度多样性可从其电子特性和主链刚性两个方面对配体进行调节。在选定的三取代和二取代的底物进行氢化反应时,可以达到较高的对映选择性(ee高达99%)。
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S,S)-邻甲苯基-DIPAMP (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(-)-4,12-双(二苯基膦基)[2.2]对环芳烷(1,5环辛二烯)铑(I)四氟硼酸盐 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(4-叔丁基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(3-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-4,7-双(3,5-二-叔丁基苯基)膦基-7“-[(吡啶-2-基甲基)氨基]-2,2”,3,3'-四氢1,1'-螺二茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (R)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4S,4''S)-2,2''-亚环戊基双[4,5-二氢-4-(苯甲基)恶唑] (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (3aR,6aS)-5-氧代六氢环戊基[c]吡咯-2(1H)-羧酸酯 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[((1S,2S)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1S,2S,3R,5R)-2-(苄氧基)甲基-6-氧杂双环[3.1.0]己-3-醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (1-(2,6-二氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙蒿油 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫-d6 龙胆紫