摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

N-(4-(methylamino)phenyl)benzamide | 55872-58-7

中文名称
——
中文别名
——
英文名称
N-(4-(methylamino)phenyl)benzamide
英文别名
N-[4-(methylamino)phenyl]benzamide
N-(4-(methylamino)phenyl)benzamide化学式
CAS
55872-58-7
化学式
C14H14N2O
mdl
——
分子量
226.278
InChiKey
AYZLWFARWBTJHR-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.6
  • 重原子数:
    17
  • 可旋转键数:
    3
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.07
  • 拓扑面积:
    41.1
  • 氢给体数:
    2
  • 氢受体数:
    2

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    描述:
    N-methyl-N,N'-p-phenylene-bis-benzamide 在 四丁基高氯酸铵 作用下, 以 N,N-二甲基甲酰胺 为溶剂, 以76 %的产率得到N-(4-(methylamino)phenyl)benzamide
    参考文献:
    名称:
    通过电还原对酰胺进行高选择性水解
    摘要:
    酰胺的脱保护实际上是有机合成中的一种普遍转化,通常在高压下使用传统的活性还原剂,例如 SmI 2 、氢硅烷、氢硼烷或 H 2 。在此,我们描述了利用水作为氢源的酰胺的绿色且可持续的电催化水解,从而理想地避免使用高压和易燃的氢气或其他有毒且昂贵的氢供体。我们的方法利用绿色电子作为还原剂,促进酰胺的高选择性和高效电催化 C-N 水解。这种环保的电化学方法还可成功应用于氨基甲酸酯、甲酰胺和硫代酰胺的 C-N 水解。此外,该方法扩展到O-N和N-N键的解离,表现出广泛的范围和高官能团耐受性。初步的机理研究支持了一种拟议的机制,涉及将羰基电还原转化为半缩醛胺中间体,随后折叠产生游离胺。
    DOI:
    10.1039/d4gc02851a
点击查看最新优质反应信息

文献信息

  • Improved and General Manganese‐Catalyzed N‐Methylation of Aromatic Amines Using Methanol
    作者:Jacob Neumann、Saravanakumar Elangovan、Anke Spannenberg、Kathrin Junge、Matthias Beller
    DOI:10.1002/chem.201605218
    日期:2017.4.24
    A novel lutidine‐based manganese PNP‐pincer complex has been synthesized for the selective N‐methylation of aromatic amines with methanol. Using borrowing hydrogen methodology, a selection of differently functionalized aniline derivatives is selectively methylated in good yields.
    已经合成了一种新型的基于二甲基吡啶的锰PNP钳配合物,用于甲醇对芳香胺的选择性N-甲基化。使用借用氢方法学,可以以良好的收率选择性地选择不同功能化的苯胺衍生物。
  • Conversion of amides to esters by the nickel-catalysed activation of amide C–N bonds
    作者:Liana Hie、Noah F. Fine Nathel、Tejas K. Shah、Emma L. Baker、Xin Hong、Yun-Fang Yang、Peng Liu、K. N. Houk、Neil K. Garg
    DOI:10.1038/nature14615
    日期:2015.8
    Although enzymes are able to cleave amide bonds in nature, it is difficult to selectively break the carbon–nitrogen bond of an amide using synthetic chemistry; now the activation and cleavage of these bonds using nickel catalysts is used to convert amides to esters. Although enzymes are able to cleave amide bonds in nature, it is difficult to selectively break the carbon–nitrogen bond of an amide using synthetic chemistry. In this paper the authors demonstrate that amide C–N bonds can be activated and cleaved using nickel catalysts. They used this methodology to convert amides to esters, which is a challenging and underdeveloped transformation. Amides are common functional groups that have been studied for more than a century1. They are the key building blocks of proteins and are present in a broad range of other natural and synthetic compounds. Amides are known to be poor electrophiles, which is typically attributed to the resonance stability of the amide bond1,2. Although amides can readily be cleaved by enzymes such as proteases3, it is difficult to selectively break the carbon–nitrogen bond of an amide using synthetic chemistry. Here we demonstrate that amide carbon–nitrogen bonds can be activated and cleaved using nickel catalysts. We use this methodology to convert amides to esters, which is a challenging and underdeveloped transformation. The reaction methodology proceeds under exceptionally mild reaction conditions, and avoids the use of a large excess of an alcohol nucleophile. Density functional theory calculations provide insight into the thermodynamics and catalytic cycle of the amide-to-ester transformation. Our results provide a way to harness amide functional groups as synthetic building blocks and are expected to lead to the further use of amides in the construction of carbon–heteroatom or carbon–carbon bonds using non-precious-metal catalysis.
    尽管酶能够在自然界中断裂酰胺键,但利用合成化学选择性地打破酰胺的碳—氮键却很困难;现在,使用镍催化剂激活和断裂这些键被用于将酰胺转化为酯。本文作者证明,酰胺C—N键可以使用镍催化剂激活和断裂。他们利用这种方法将酰胺转化为酯,这是一种具有挑战性且发展不足的转化。酰胺是一类常见的官能团,一个多世纪以来一直被研究。它们是蛋白质的关键构建模块,存在于广泛的天然和合成化合物中。酰胺被认为是一种差的亲电试剂,这通常归因于酰胺键的共振稳定性。尽管酶如蛋白酶可以轻易地断裂酰胺,但利用合成化学选择性地打破酰胺的碳—氮键却很困难。在这里,我们证明酰胺碳—氮键可以使用镍催化剂激活和断裂。我们利用这种方法将酰胺转化为酯,这是一种具有挑战性且发展不足的转化。反应方法在极其温和的反应条件下进行,并避免了使用大量过量的醇亲核试剂。密度泛函理论计算为酰胺到酯转化的热力学和催化循环提供了见解。我们的结果为利用酰胺官能团作为合成构建块提供了一种方法,并有望进一步在非贵金属催化的碳—杂原子或碳—碳键构建中使用酰胺。
  • US4138405A
    申请人:——
    公开号:US4138405A
    公开(公告)日:1979-02-06
  • US4163015A
    申请人:——
    公开号:US4163015A
    公开(公告)日:1979-07-31
  • 10.1039/d4gc02851a
    作者:He, Jin-Yu、Wang, Yan-Zhao、Duan, Wen-Xi、Li, Jia-Rong、Xu, Hao、Zhu, Cuiju
    DOI:10.1039/d4gc02851a
    日期:——
    Deprotection of amides is a virtually universal transformation in organic synthesis, often employing traditional active reductants such as SmI2, hydrosilanes, hydroboranes or H2 under high-pressure. Herein, we describe a green and sustainable electrocatalytic hydrolysis of amides utilizing water as the hydrogen source, thereby ideally avoiding the use of high-pressure and flammable hydrogen gas or
    酰胺的脱保护实际上是有机合成中的一种普遍转化,通常在高压下使用传统的活性还原剂,例如 SmI 2 、氢硅烷、氢硼烷或 H 2 。在此,我们描述了利用水作为氢源的酰胺的绿色且可持续的电催化水解,从而理想地避免使用高压和易燃的氢气或其他有毒且昂贵的氢供体。我们的方法利用绿色电子作为还原剂,促进酰胺的高选择性和高效电催化 C-N 水解。这种环保的电化学方法还可成功应用于氨基甲酸酯、甲酰胺和硫代酰胺的 C-N 水解。此外,该方法扩展到O-N和N-N键的解离,表现出广泛的范围和高官能团耐受性。初步的机理研究支持了一种拟议的机制,涉及将羰基电还原转化为半缩醛胺中间体,随后折叠产生游离胺。
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐