Guanidine–Guanidinium Cooperation in Bifunctional Artificial Phosphodiesterases Based on Diphenylmethane Spacers; gem-Dialkyl Effect on Catalytic Efficiency
摘要:
Diphenylmethane derivatives 1-3, decorated with two guanidine units, are effective catalysts of HPNP transesterification. Substitution of the methylene group of the parent diphenylmethane spacer with cyclohexylidene and adamantylidene moieties enhances catalytic efficency, with gem-dialkyl effect accelerations of 4.5 and 9.1, respectively. Activation parameters and DFT calculations of the rotational barriers around the C-Ar bonds indicate that a major contribution to the driving force for enhanced catalysis is entropic in nature.
Guanidine–Guanidinium Cooperation in Bifunctional Artificial Phosphodiesterases Based on Diphenylmethane Spacers; gem-Dialkyl Effect on Catalytic Efficiency
摘要:
Diphenylmethane derivatives 1-3, decorated with two guanidine units, are effective catalysts of HPNP transesterification. Substitution of the methylene group of the parent diphenylmethane spacer with cyclohexylidene and adamantylidene moieties enhances catalytic efficency, with gem-dialkyl effect accelerations of 4.5 and 9.1, respectively. Activation parameters and DFT calculations of the rotational barriers around the C-Ar bonds indicate that a major contribution to the driving force for enhanced catalysis is entropic in nature.
Guanidine–Guanidinium Cooperation in Bifunctional Artificial Phosphodiesterases Based on Diphenylmethane Spacers; <i>gem</i>-Dialkyl Effect on Catalytic Efficiency
Diphenylmethane derivatives 1-3, decorated with two guanidine units, are effective catalysts of HPNP transesterification. Substitution of the methylene group of the parent diphenylmethane spacer with cyclohexylidene and adamantylidene moieties enhances catalytic efficency, with gem-dialkyl effect accelerations of 4.5 and 9.1, respectively. Activation parameters and DFT calculations of the rotational barriers around the C-Ar bonds indicate that a major contribution to the driving force for enhanced catalysis is entropic in nature.