摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1,5-二甲基己基甲苯磺酸酯 | 102736-18-5

中文名称
1,5-二甲基己基甲苯磺酸酯
中文别名
——
英文名称
1,5-dimethylhexyl tosylate
英文别名
6-Methylheptan-2-yl 4-methylbenzenesulfonate
1,5-二甲基己基甲苯磺酸酯化学式
CAS
102736-18-5
化学式
C15H24O3S
mdl
——
分子量
284.42
InChiKey
QYLHEARTGIQUIS-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    382.2±11.0 °C(Predicted)
  • 密度:
    1.052±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    4.6
  • 重原子数:
    19
  • 可旋转键数:
    7
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.6
  • 拓扑面积:
    51.8
  • 氢给体数:
    0
  • 氢受体数:
    3

反应信息

  • 作为反应物:
    描述:
    1,5-二甲基己基甲苯磺酸酯乙醇硫酸 、 sodium hydroxide 作用下, 反应 27.5h, 生成 1,5-二甲基己烷-1-羧酸
    参考文献:
    名称:
    Synthesis and characterization of cis-4-decenoyl-CoA, 3-phenylpropionyl-CoA, and 2,6-dimethylheptanoyl-CoA
    摘要:
    The measurement of acyl-CoA dehydrogenase activities is an essential part of the investigation of patients with suspected defects in fatty acid oxidation. Multiple methods are available for the synthesis of the substrates used for measuring acyl-CoA dehydrogenase activities: however, the yields are low and the products are used without purification. In addition, the reported characterization of acyl-CoAs focuses on the CoA moiety, not on the acyl group. Here we describe the synthesis of three medium-chain acyl-CoAs from mixed anhydrides of the fatty acids using an aqueous-organic solvent mixture optimized to obtain the highest yield. First, cis-4-decenoic acid and 2,6-dimethylheptanoic acid were prepared (3-phenylpropionic acid is commercially available). These were characterized by gas chromatography/mass spectrometry (GC/MS), H-1 nuclear magnetic resonance (NMR), and C-13 NMR. Then cis-4-decenoyl-CoA, 3-phenylpropionyl-CoA, and 2,6-dimethylheptanoyl-CoA were synthesized. These were then purified by ion exchange solid-phase extraction using 2-(2-pyridyl)ethyl-functionalized silica gel, followed by reversed-phase semipreparative high-performance liquid chromatography with ultraviolet detection (HPLC-UV). The purified acyl-CoAs were characterized by analytical HPLC-UV followed by data-dependent tandem mass spectrometry (MS/MS) analysis on the largest responding MS mass (HPLC-UV-MS-MS/MS) and 13C NMR. The yields of the purified acyl-CoAs were between 75% and 78% based on coenzyme A trilithium salt (CoASH). Acyl-CoA dehydrogenase activities were measured in rat skeletal muscle mitochondria using, as substrates, the synthesized cis-4-decenoyl-CoA, 3-phenylpropionyl-CoA, and 2,6-dimethylheptanoyl-CoA. These results were compared with the results using our standard substrates butyryl-CoA, octanoyl-CoA, and palmitoyl-CoA. (C) 2010 Elsevier Inc. All rights reserved.
    DOI:
    10.1016/j.ab.2010.02.026
  • 作为产物:
    描述:
    参考文献:
    名称:
    Synthesis and characterization of cis-4-decenoyl-CoA, 3-phenylpropionyl-CoA, and 2,6-dimethylheptanoyl-CoA
    摘要:
    The measurement of acyl-CoA dehydrogenase activities is an essential part of the investigation of patients with suspected defects in fatty acid oxidation. Multiple methods are available for the synthesis of the substrates used for measuring acyl-CoA dehydrogenase activities: however, the yields are low and the products are used without purification. In addition, the reported characterization of acyl-CoAs focuses on the CoA moiety, not on the acyl group. Here we describe the synthesis of three medium-chain acyl-CoAs from mixed anhydrides of the fatty acids using an aqueous-organic solvent mixture optimized to obtain the highest yield. First, cis-4-decenoic acid and 2,6-dimethylheptanoic acid were prepared (3-phenylpropionic acid is commercially available). These were characterized by gas chromatography/mass spectrometry (GC/MS), H-1 nuclear magnetic resonance (NMR), and C-13 NMR. Then cis-4-decenoyl-CoA, 3-phenylpropionyl-CoA, and 2,6-dimethylheptanoyl-CoA were synthesized. These were then purified by ion exchange solid-phase extraction using 2-(2-pyridyl)ethyl-functionalized silica gel, followed by reversed-phase semipreparative high-performance liquid chromatography with ultraviolet detection (HPLC-UV). The purified acyl-CoAs were characterized by analytical HPLC-UV followed by data-dependent tandem mass spectrometry (MS/MS) analysis on the largest responding MS mass (HPLC-UV-MS-MS/MS) and 13C NMR. The yields of the purified acyl-CoAs were between 75% and 78% based on coenzyme A trilithium salt (CoASH). Acyl-CoA dehydrogenase activities were measured in rat skeletal muscle mitochondria using, as substrates, the synthesized cis-4-decenoyl-CoA, 3-phenylpropionyl-CoA, and 2,6-dimethylheptanoyl-CoA. These results were compared with the results using our standard substrates butyryl-CoA, octanoyl-CoA, and palmitoyl-CoA. (C) 2010 Elsevier Inc. All rights reserved.
    DOI:
    10.1016/j.ab.2010.02.026
点击查看最新优质反应信息

文献信息

  • Rates and alkyl group size in solvolysis of alkyl derivatives
    作者:Mirko Orlovic、Olga Kronja、Kresimir Humski、Stanko Borcic、Eugenio Polla
    DOI:10.1021/jo00367a001
    日期:1986.8
  • Indole and benzimidazole derivatives as steroid 5α-reductase inhibitors in the rat prostate
    作者:Hitoshi Takami、Nobuyuki Kishibayashi、Akio Ishii、Toshiaki Kumazawa
    DOI:10.1016/s0968-0896(98)80018-7
    日期:1998.12
    A novel series of indole and benzimidazole derivatives were synthesized and evaluated for their inhibitory activity of rat prostatic 5 alpha-reductase. Among these compounds, 4-2-[1-(4,4'-dipropylbenzhydryl)indole-5-carboxamido]phenoxy)butyric acid (15) and its benzimidazole analogue 25 showed potent inhibitory activities for rat prostatic 5 alpha-reductase (IC50 values of 9.6+/-1.0 and 13+/-1.5 nM, respectively), with the potency very close to that of finasteride. Compound 30, in which the moiety between the benzene ring and amide bond was replaced by quinolin-4-one ring, showed almost equipotent activity (IC50=19+/-6.2 nM) with the correspondent amide derivative 13. This result was consistent with the previous observation that the coplanarity of this moiety might contribute to the potent inhibitory activity. (C) 1998 Elsevier Science Ltd. All rights reserved.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S,S)-邻甲苯基-DIPAMP (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(-)-4,12-双(二苯基膦基)[2.2]对环芳烷(1,5环辛二烯)铑(I)四氟硼酸盐 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(4-叔丁基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(3-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-4,7-双(3,5-二-叔丁基苯基)膦基-7“-[(吡啶-2-基甲基)氨基]-2,2”,3,3'-四氢1,1'-螺二茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (R)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4S,4''S)-2,2''-亚环戊基双[4,5-二氢-4-(苯甲基)恶唑] (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (3aR,6aS)-5-氧代六氢环戊基[c]吡咯-2(1H)-羧酸酯 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[((1S,2S)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1S,2S,3R,5R)-2-(苄氧基)甲基-6-氧杂双环[3.1.0]己-3-醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (1-(2,6-二氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙蒿油 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫-d6 龙胆紫