摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1,2-bis(3,5-bis(trifluoromethyl)phenyl)ethyne

中文名称
——
中文别名
——
英文名称
1,2-bis(3,5-bis(trifluoromethyl)phenyl)ethyne
英文别名
1,2-Bis[3,5-bis(trifluoromethyl)phenyl]ethyne;1-[2-[3,5-bis(trifluoromethyl)phenyl]ethynyl]-3,5-bis(trifluoromethyl)benzene
1,2-bis(3,5-bis(trifluoromethyl)phenyl)ethyne化学式
CAS
——
化学式
C18H6F12
mdl
——
分子量
450.226
InChiKey
UOIKFKIMHPBEQF-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    7.5
  • 重原子数:
    30
  • 可旋转键数:
    2
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.22
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    12

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    1,2-bis(3,5-bis(trifluoromethyl)phenyl)ethyne1-吡啶-2-基吡啶-2-酮dichloro(pentamethylcyclopentadienyl)rhodium (III) dimersilver(I) acetate 、 copper diacetate 作用下, 以 甲醇 为溶剂, 以72%的产率得到5,6,7,8-tetrakis(3,5-bis(trifluoromethyl)phenyl)-1-(pyridin-2-yl)-quinolin-2(1H)-one
    参考文献:
    名称:
    轻度铑催化从吡啶酮直接合成喹诺酮类化合物:在硝基芳香烃检测中的应用
    摘要:
    铑通过双重C–H活化催化的直接区域选择性氧化环化反应可从吡啶酮合成高度取代的喹诺酮。反应在温和条件下进行,范围宽广,官能团耐受性强。探索了这些新颖的喹诺酮类化合物以识别硝基芳族化合物。
    DOI:
    10.1021/acs.joc.7b01932
  • 作为产物:
    描述:
    参考文献:
    名称:
    轻度铑催化从吡啶酮直接合成喹诺酮类化合物:在硝基芳香烃检测中的应用
    摘要:
    铑通过双重C–H活化催化的直接区域选择性氧化环化反应可从吡啶酮合成高度取代的喹诺酮。反应在温和条件下进行,范围宽广,官能团耐受性强。探索了这些新颖的喹诺酮类化合物以识别硝基芳族化合物。
    DOI:
    10.1021/acs.joc.7b01932
点击查看最新优质反应信息

文献信息

  • Pd-Catalyzed Oxidative Annulation of Aryl Ethers with Alkynes: Synthesis of Functionalized Spirocycles and Naphthalenes
    作者:Shiyong Peng、Zhonghao Sun、Huijuan Zhu、Nuan Chen、Xiaobo Sun、Xiaojie Gong、Jian Wang、Lei Wang
    DOI:10.1021/acs.orglett.0c00970
    日期:2020.4.17
    dearomative [2+2+1] annulations of aryl ethers with alkynes are reported via para-selective C-H functionalization, providing highly functionalized spirocyclohexadienones in moderate to excellent yields under mild reaction conditions. Importantly, mechanistic investigation indicated an unusual C-O bond cleavage was involved. Moreover, polyarylated naphthalenes could be obtained via oxidative [2+2+2] annulation
    通过对位选择性CH官能化报道了钯催化的芳基醚与炔烃的脱芳香[2 + 2 + 1]环化反应,在温和的反应条件下,以中等至极好的收率提供了高度官能化的螺环己二酮。重要的是,机械研究表明涉及异常的CO键裂解。此外,在相同的催化体系下,通过将芳基醚从单甲氧基苯转变为聚甲氧基苯,可以通过氧化[2 + 2 + 2]环氧化反应制得聚芳基萘。
  • Palladium‐Catalyzed Cycloisomerizations of Diarylacetylenes: Synthesis, Structures, and Physical Properties of Highly Substituted Naphthalenes and 8,8 a‐Dihydrocyclopenta[<i>a</i>]indenes
    作者:Tsun‐Cheng Wu、Chia‐Cheng Tai、Hsin‐Chieh Tiao、Yu‐Ting Chang、Chia‐Chun Liu、Ching‐Hsiu Li、Cheng‐Hao Huang、Ming‐Yu Kuo、Yao‐Ting Wu
    DOI:10.1002/chem.201100437
    日期:2011.6.20
    Depending on the electronic properties of their substituents, the major products generated by palladium‐catalyzed cycloisomerizations of diarylalkynes are either highly substituted 8,8a‐dihydrocyclopenta[a]indenes 3 or naphthalenes 4. The structures of these compounds were verified by X‐ray crystallographic analysis. Many functional groups tolerated the reaction conditions evaluated in this study.
    根据其取代基的电子特性,二芳基炔烃的钯催化环异构化反应生成的主要产物是高度取代的8,8a-二氢环戊[ a ]茚3或萘4。这些化合物的结构通过X射线晶体学分析进行了验证。许多官能团耐受本研究中评估的反应条件。同位素标记的实验表明,加水在形成这两类化合物中都起着至关重要的作用。系统研究了环加合物3及其类似物的光物理和电化学性质,并将其与基于密度泛函理论的计算预测进行了比较。二氢环戊[一个]茚3在为固体或液体形式显示强发光,而环戊二烯并[一个]茚11j中实际上是无荧光。直接连接到化合物3的主链上的官能团会显着影响物理性能。芳基取代基引起的空间效应引起不同的发光现象,包括聚集诱导和增强的发射。
  • One‐Step Annulative π‐Extension of Alkynes with Dibenzosiloles or Dibenzogermoles by Palladium/ <i>o</i> ‐chloranil Catalysis
    作者:Kyohei Ozaki、Keiichiro Murai、Wataru Matsuoka、Katsuaki Kawasumi、Hideto Ito、Kenichiro Itami
    DOI:10.1002/anie.201610374
    日期:2017.1.24
    report an efficient one‐step annulative π‐extension reaction of alkynes that provides access to diarylphenanthrenes and related nanographene precursors. In the presence of a cationic palladium/o‐chloranil catalyst system and dibenzosiloles or dibenzogermoles as π‐extending agents, a variety of diarylacetylenes are transformed successfully into 9,10‐diarylphenanthrenes in a single step with good functional‐group
    在材料科学中,可靠而短的合成多环芳烃和纳米石墨烯的合成路线很重要。在本文中,我们报告了炔烃的高效一步式环扩反应,可接触二芳基菲和相关的纳米石墨烯前体。在阳离子钯/ o存在下氯苯胺催化剂体系和二苯甲酚或二苯并germoles作为π扩展剂,各种二芳基乙炔可在一个步骤中成功转化为具有良好官能团耐受性的9,10-二芳基菲。此外,还证明了1,4-双(苯基乙炔基)苯与二苯基-1,3-丁二炔的π延伸反应,提供了低聚亚芳基产物,这些产物在合成较大的多环芳烃和纳米石墨烯方面具有潜力。
  • Palladium-Catalyzed [5 + 2] Rollover Annulation of 1-Benzylpyrazoles with Alkynes: A Direct Entry to Tricyclic 2-Benzazepines
    作者:Alejandro Suárez-Lustres、Nuria Martínez-Yáñez、Álvaro Velasco-Rubio、Jesús A. Varela、Carlos Saá
    DOI:10.1021/acs.orglett.2c04300
    日期:2023.2.10
    first Pd-catalyzed [5 + 2] rollover annulation of 1-benzylpyrazoles with alkynes to assemble 10H-benzo[e]pyrazolo[1,5-a]azepines (tricyclic 2-benzazepines) has been developed. The rollover annulation implies a twofold C–H activation of aryl and heteroaryl Csp2–H bonds (C–H/C–H) of 1-benzylpyrazoles (five-atom partners) and alkynes to give the [5 + 2] annulated compounds.
    已开发出第一个 Pd 催化的 [5 + 2] 翻转环化 1-苄基吡唑与炔烃以组装 10 H-苯并 [ e ] 吡唑并 [1,5- a ] 氮杂(三环 2-苯并氮杂)。翻转环化意味着 1-苄基吡唑(五原子伙伴)和炔烃的芳基和杂芳基 C sp 2 -H 键 (C-H/C-H)的双重 C-H 活化,得到 [5 + 2] 环化化合物。
  • Synthetic, Mechanistic, and Computational Investigations of Nitrile-Alkyne Cross-Metathesis
    作者:Andrea M. Geyer、Eric S. Wiedner、J. Brannon Gary、Robyn L. Gdula、Nicola C. Kuhlmann、Marc J. A. Johnson、Barry D. Dunietz、Jeff W. Kampf
    DOI:10.1021/ja800020w
    日期:2008.7.1
    The terminal nitride complexes NW(OC(CF3)(2)Me)(3)(DME) (1-DME), [Li(DME)(2)][NW(OC(CF3)(2)Me)(4)] (2), and [NW(OCMe2CF3)(3)](3) (3) were prepared in good yield by salt elimination from [NWCl3](4). X-ray structures revealed that 1-DME and 2 are monomeric in the solid state. All three complexes catalyze the cross-metathesis of 3-hexyne with assorted nitriles to form propionitrile and the corresponding alkyne. Propylidyne and substituted benzylidyne complexes RCW(OC(CF3)(2)Me)(3) were isolated in good yield upon reaction of 1-DME with 3-hexyne or 1-aryl-1-butyne. The corresponding reactions failed for 3. Instead, EtCW(OC(CF3)Me-2)(3) (6) was prepared via the reaction of W-2(OC(CF3)Me-2)(6) with 3-hexyne at 95 degrees C. Benzylidyne complexes of the form ArCW(OC(CF3)Me-2)(3) (Ar = aryl) then were prepared by treatment of 6 with the appropriate symmetrical alkyne ArCCAr. Three coupled cycles for the interconversion of 1-DME with the corresponding propylidyne and benzylidyne complexes via [2 + 2] cycloaddition-cycloreversion were examined for reversibility. Stoichiometric reactions revealed that both nitrile-alkyne cross-metathesis (NACM) cycles as well as the alkyne cross-metathesis (ACM) cycle operated reversibly in this system. With catalyst 3, depending on the aryl group used, at least one step in one of the NACM cycles was irreversible. In general, catalyst 1-DME afforded more rapid reaction than did 3 under comparable conditions. However, 3 displayed a slightly improved tolerance of polar functional groups than did 1-DME. For both 11-DME and 3, ACM is more rapid than NACM under typical conditions. Alkyne polymerization (AP) is a competing reaction with both 1-DME and 3. It can be suppressed but not entirely eliminated via manipulation of the catalyst concentration. As AP selectively removes 3-hexyne from the system, tandem NACM-ACM-AP can be used to prepare symmetrically substituted alkynes with good selectivity, including an arylene-ethynylene macrocycle. Alternatively, unsymmetrical alkynes of the form EtCCR (R variable) can be prepared with good selectivity via the reaction of RCN with excess 3-hexyne under conditions that suppress AP. DFT calculations support a [2 + 2) cycloaddition-cycloreversion mechanism analogous to that of alkyne metathesis. The barrier to azametalacyciobutadiene ring formation/breakup is greater than that for the corresponding metalacyclobutadiene. Two distinct high-energy azametalacyclobutadiene intermediates were found. These adopted a distorted square pyramidal geometry with significant bond localization.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐