摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

4-[4-[4-(4-Anilinoanilino)anilino]anilino]-4-oxobutanoic acid | 1398145-78-2

中文名称
——
中文别名
——
英文名称
4-[4-[4-(4-Anilinoanilino)anilino]anilino]-4-oxobutanoic acid
英文别名
——
4-[4-[4-(4-Anilinoanilino)anilino]anilino]-4-oxobutanoic acid化学式
CAS
1398145-78-2
化学式
C28H26N4O3
mdl
——
分子量
466.539
InChiKey
QKNOANWUYZNTDZ-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    5.2
  • 重原子数:
    35
  • 可旋转键数:
    10
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.07
  • 拓扑面积:
    103
  • 氢给体数:
    5
  • 氢受体数:
    6

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    参考文献:
    名称:
    Electroactive nanofibrous biomimetic scaffolds by thermally induced phase separation
    摘要:
    制造用于组织再生的功能性纳米纤维仿生支架仍是一项挑战。本研究通过热诱导相分离(TIPS)技术,展示了利用聚乳酸与其他功能聚合物的共混物制备功能性纳米纤维支架的方法,在此以利用聚乳酸与电活性可降解四苯胺-聚乳酸-四苯胺(TPT)嵌段共聚物的共混物通过 TIPS 制备电活性纳米纤维支架为例进行说明。TPT 共聚物是通过羧基封端四苯胺和聚乳酸之间的偶联反应合成的。研究人员对 TPT 和聚乳酸/TPT 共混薄膜的化学结构、电活性、热性能和机械性能进行了表征。利用 TIPS 将共聚物混合物制成电活性纳米纤维支架。研究了苯胺四聚物含量、聚合物浓度和相分离温度对纳米纤维直径的影响。评估了电活性生物可降解基底上 C2C12 肌母细胞的粘附和增殖以及蛋白质的吸附情况,结果表明电活性材料无毒,无需电刺激即可增强 C2C12 细胞的增殖,并且与聚乳酸相比吸附了更多的蛋白质。电活性基底上的电刺激能显著提高 C2C12 肌母细胞的细胞增殖。这项工作开辟了利用 TIPS 从聚乳酸和其他功能聚合物混合物中制造功能性纳米纤维支架的途径。
    DOI:
    10.1039/c4tb00493k
点击查看最新优质反应信息

文献信息

  • Nanofibrous electroactive scaffolds from a chitosan-grafted-aniline tetramer by electrospinning for tissue engineering
    作者:Xiaojie Ma、Juan Ge、Yan Li、Baolin Guo、Peter X. Ma
    DOI:10.1039/c4ra00083h
    日期:——
    Functional degradable biomimetic scaffolds have great potential applications in tissue regeneration. Nanofibrous electroactive biodegradable scaffolds from chitosan-grafted-aniline tetramer (CS–AT) were fabricated by an electrospinning method. The CS–AT was synthesized by amidation reaction between the carboxyl group of aniline tetramer and the amine group of chitosan. The structure of CS–AT copolymer was characterized by 1H NMR, FT-IR, TGA and XRD. UV-vis and cyclic voltammetry tests were used to demonstrate the electroactivity of CS–AT. The electrospun nanofibers were created from CS–AT solution. The morphology of the CS–AT nanofibers was observed by employing SEM and the results illustrated that the diameter of the nanofibers of deposited CS and CS–AT samples was controlled by both polymer concentration and the AT content. The biocompatibility of the materials was evaluated by cell adhesion and proliferation of C2C12 myoblasts and dog chondrocyte cells, and the results demonstrated that the CS–AT materials had good biocompatibility and greatly enhanced the cell adhesion and proliferation of C2C12 cells.
    功能性可降解生物仿生支架在组织再生领域具有巨大的应用潜力。通过电纺技术制备了来自壳聚糖接枝苯胺四聚体(CS–AT)的纳米纤维电活性可生物降解支架。CS–AT是通过苯胺四聚体的羧基与壳聚糖基之间的酰胺化反应合成的。通过1H NMR、FT-IR、TGA和XRD对CS–AT共聚物的结构进行了表征。使用UV-vis和循环伏安测试来证明CS–AT的电活性。电纺纳米纤维由CS–AT溶液制成。通过SEM观察CS–AT纳米纤维的形态,结果表明沉积的CS和CS–AT样品的纳米纤维直径受聚合物浓度和AT含量的控制。通过C2C12成肌细胞和大鼠软骨细胞的细胞粘附和增殖评估材料的生物相容性,结果显示CS–AT材料具有良好的生物相容性,并显著增强了C2C12细胞的粘附和增殖。
  • Graphene dispersant and application thereof
    申请人:NINGBO ZKJH NEW MATERIAL CO., LTD.
    公开号:US10696790B2
    公开(公告)日:2020-06-30
    The present disclosure provides a method for dispersing graphene. The method includes the following steps: providing a graphene material and a graphene dispersant, wherein the graphene dispersant comprises aniline oligomer or aniline oligomer derivative, the aniline oligomer or aniline oligomer derivative is an electroactive polymer, and the aniline oligomer or aniline oligomer derivative is able to combine with the graphene material via π-π bond; and adding the graphene material and the graphene dispersant to a dispersing medium, making the aniline oligomer or aniline oligomer derivative combine with the graphene material via π-π bond, and dispersing the graphene material in the dispersing medium by the graphene dispersant.
    本公开提供了一种分散石墨烯的方法。该方法包括以下步骤:提供石墨烯材料和石墨烯分散剂,其中石墨烯分散剂包括苯胺低聚物或苯胺低聚物衍生物苯胺低聚物或苯胺低聚物衍生物为电活性聚合物,苯胺低聚物或苯胺低聚物衍生物能够通过π-π键与石墨烯材料结合;将石墨烯材料和石墨烯分散剂加入分散介质中,使苯胺低聚物或苯胺低聚物衍生物通过π-π键与石墨烯材料结合,并通过石墨烯分散剂将石墨烯材料分散在分散介质中。
  • Two-dimensional nanomaterial dispersant, preparation method of two-dimensional nanomaterial by liquid phase exfoliation, and use thereof
    申请人:Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences
    公开号:US10843153B2
    公开(公告)日:2020-11-24
    The present invention discloses a two-dimensional nanomaterial dispersant, a preparation method of a two-dimensional nanomaterial by liquid phase exfoliation, and use thereof. The present invention utilizes a readily synthesizable and inexpensive oligoaniline, oligoaniline derivative, polyaniline conducting polymer or the like as a dispersant of a two-dimensional nanomaterial, such as a boron nitride nanosheet or a molybdenum disulfide nanosheet, simply mixes the dispersant with boron nitride or molybdenum disulfide in a dispersion medium, such as water, an organic solvent, or a polymer resin, and can significantly improve dispersity and dispersion stability of the two-dimensional nanomaterial in the dispersion medium by a physical interaction therebetween; and can also obtain the two-dimensional nanomaterial in the dispersant by a simple liquid phase exfoliation method, which is an environment friendly and efficient process with simple operations without impairing the physical structure and chemical properties of the two-dimensional nanomaterial, and facilitates large-scale implementation.
    本发明公开了一种二维纳米材料分散剂、一种通过液相剥离法制备二维纳米材料的方法及其用途。本发明利用一种易于合成且价格低廉的低聚苯胺、低聚苯胺生物聚苯胺导电聚合物或类似物作为二维纳米材料(如氮化硼纳米片或二硫化钼纳米片)的分散剂、只需将分散剂与氮化硼二硫化钼、有机溶剂或聚合物树脂等分散介质中混合,就能通过其间的物理作用显著提高二维纳米材料在分散介质中的分散性和分散稳定性;还可以通过简单的液相剥离法获得分散剂中的二维纳米材料,该方法环保、高效,操作简单,不会损害二维纳米材料的物理结构和化学性质,便于大规模实施。
  • GRAPHENE DISPERSANT AND APPLICATION THEREOF
    申请人:NINGBO ZKJH NEW MATERIAL CO., LTD.
    公开号:US20170260054A1
    公开(公告)日:2017-09-14
    The present disclosure provides a method for dispersing graphene. The method includes the following steps: providing a graphene material and a graphene dispersant, wherein the graphene dispersant comprises aniline oligomer or aniline oligomer derivative, the aniline oligomer or aniline oligomer derivative is an electroactive polymer, and the aniline oligomer or aniline oligomer derivative is able to combine with the graphene material via π-π bond; and adding the graphene material and the graphene dispersant to a dispersing medium, making the aniline oligomer or aniline oligomer derivative combine with the graphene material via π-π bond, and dispersing the graphene material in the dispersing medium by the graphene dispersant.
  • Two-Dimensional Nanomaterial Dispersant, Preparation Method of Two-Dimensional Nanomaterial by Liquid Phase Exfoliation, and Use Thereof
    申请人:Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences
    公开号:US20190143286A1
    公开(公告)日:2019-05-16
    The present invention discloses a two-dimensional nanomaterial dispersant, a preparation method of a two-dimensional nanomaterial by liquid phase exfoliation, and use thereof. The present invention utilizes a readily synthesizable and inexpensive oligoaniline, oligoaniline derivative, polyaniline conducting polymer or the like as a dispersant of a two-dimensional nanomaterial, such as a boron nitride nanosheet or a molybdenum disulfide nanosheet, simply mixes the dispersant with boron nitride or molybdenum disulfide in a dispersion medium, such as water, an organic solvent, or a polymer resin, and can significantly improve dispersity and dispersion stability of the two-dimensional nanomaterial in the dispersion medium by a physical interaction therebetween; and can also obtain the two-dimensional nanomaterial in the dispersant by a simple liquid phase exfoliation method, which is an environment friendly and efficient process with simple operations without impairing the physical structure and chemical properties of the two-dimensional nanomaterial, and facilitates large-scale implementation.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S,S)-邻甲苯基-DIPAMP (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(-)-4,12-双(二苯基膦基)[2.2]对环芳烷(1,5环辛二烯)铑(I)四氟硼酸盐 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(4-叔丁基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(3-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-4,7-双(3,5-二-叔丁基苯基)膦基-7“-[(吡啶-2-基甲基)氨基]-2,2”,3,3'-四氢1,1'-螺二茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (R)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4S,4''S)-2,2''-亚环戊基双[4,5-二氢-4-(苯甲基)恶唑] (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (3aR,6aS)-5-氧代六氢环戊基[c]吡咯-2(1H)-羧酸酯 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[((1S,2S)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1S,2S,3R,5R)-2-(苄氧基)甲基-6-氧杂双环[3.1.0]己-3-醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (1-(2,6-二氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙蒿油 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫-d6 龙胆紫