摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

3-allyloxy-4,4,5,5-tetramethyl-3-phenyl-1,2-dioxolane

中文名称
——
中文别名
——
英文名称
3-allyloxy-4,4,5,5-tetramethyl-3-phenyl-1,2-dioxolane
英文别名
3,3,4,4-Tetramethyl-5-phenyl-5-prop-2-enoxydioxolane
3-allyloxy-4,4,5,5-tetramethyl-3-phenyl-1,2-dioxolane化学式
CAS
——
化学式
C16H22O3
mdl
——
分子量
262.349
InChiKey
UMMKRCLJAPYOQX-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.6
  • 重原子数:
    19
  • 可旋转键数:
    4
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.5
  • 拓扑面积:
    27.7
  • 氢给体数:
    0
  • 氢受体数:
    3

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Synthesis and Thermolysis of Ketal Derivatives of 3-Hydroxy-1,2-dioxolanes
    摘要:
    3-[(Trimethylsilyl)oxy]-3,4,4,5-tetramethyl-5-phenyl-1,2-dioxolane (2), 3-methoxy-3,4,4,5-tetra-methyl-5-phenyl-1,2-dioxolane (3), and 3-acetoxy-3,4,4,5-tetramethyl-5-phenyl-1 (4) were synthesized from the corresponding 3-hydroxy-1,2-dioxolane (1a) under basic conditions. 3-Acetoxy-4,4-dimethyl-3,5,5-triphenyl-1,2-dioxolane (5) was also synthesized via this approach. Under acidic conditions, 3-hydroxy-1,2-dioxolane la underwent quantitative decomposition to phenol and 3,3-dimethyl-2,4-pentanedione. This competing degradation was dependent on the nature of the substituents at position-5. Methyl groups at position-5 slowed the degradative rearrangement whereas phenyl groups favored it. 3-Methoxy- and 3-(allyloxy)-4,4,5,5-tetramethyl-3-pheny dioxolanes (6, 7) were synthesized under acidic conditions from the appropriate 1,2-dioxolane precursors and the corresponding alcohols. At 60 degrees C, derivatized 1,2-dioxolanes 2-7 were found to be more stable than the corresponding 3-hydroxy-1, 2-dioxolanes. The first order rate constants for the thermolysis of 1,2-dioxolanes 2-7 were determined. Product studies showed that thermolysis of 2-5 yielded pairs of ketones and derivatized carboxylic acids. In addition to R-group migration products, an acetoxy migration product was observed for the thermolysis of 4. Thermolysis of 6 at 60 degrees C in benzene yielded methyl benzoate and pinacolone, quantitatively. Thermolysis of 7 yielded products analogous to those for 6. No evidence for internal trapping of radicals by the carbon-carbon double bond of the allyloxy group in 7 was found. The thermolyis appeared to proceed with peroxy bond homolysis as the rate-determining step. Subsequent beta-scissions of the intermediate 1,5-oxygen diradical with interesting rearrangements that show a high preference for alkyl vs phenyl migration account for the observed product distributions. The results suggest that the beta-scission/ rearrangement mechanism may not be concerted but rather stepwise to yield 1,3-diradical and carbonyl fragments.
    DOI:
    10.1021/jo00101a030
  • 作为产物:
    参考文献:
    名称:
    Synthesis and Thermolysis of Ketal Derivatives of 3-Hydroxy-1,2-dioxolanes
    摘要:
    3-[(Trimethylsilyl)oxy]-3,4,4,5-tetramethyl-5-phenyl-1,2-dioxolane (2), 3-methoxy-3,4,4,5-tetra-methyl-5-phenyl-1,2-dioxolane (3), and 3-acetoxy-3,4,4,5-tetramethyl-5-phenyl-1 (4) were synthesized from the corresponding 3-hydroxy-1,2-dioxolane (1a) under basic conditions. 3-Acetoxy-4,4-dimethyl-3,5,5-triphenyl-1,2-dioxolane (5) was also synthesized via this approach. Under acidic conditions, 3-hydroxy-1,2-dioxolane la underwent quantitative decomposition to phenol and 3,3-dimethyl-2,4-pentanedione. This competing degradation was dependent on the nature of the substituents at position-5. Methyl groups at position-5 slowed the degradative rearrangement whereas phenyl groups favored it. 3-Methoxy- and 3-(allyloxy)-4,4,5,5-tetramethyl-3-pheny dioxolanes (6, 7) were synthesized under acidic conditions from the appropriate 1,2-dioxolane precursors and the corresponding alcohols. At 60 degrees C, derivatized 1,2-dioxolanes 2-7 were found to be more stable than the corresponding 3-hydroxy-1, 2-dioxolanes. The first order rate constants for the thermolysis of 1,2-dioxolanes 2-7 were determined. Product studies showed that thermolysis of 2-5 yielded pairs of ketones and derivatized carboxylic acids. In addition to R-group migration products, an acetoxy migration product was observed for the thermolysis of 4. Thermolysis of 6 at 60 degrees C in benzene yielded methyl benzoate and pinacolone, quantitatively. Thermolysis of 7 yielded products analogous to those for 6. No evidence for internal trapping of radicals by the carbon-carbon double bond of the allyloxy group in 7 was found. The thermolyis appeared to proceed with peroxy bond homolysis as the rate-determining step. Subsequent beta-scissions of the intermediate 1,5-oxygen diradical with interesting rearrangements that show a high preference for alkyl vs phenyl migration account for the observed product distributions. The results suggest that the beta-scission/ rearrangement mechanism may not be concerted but rather stepwise to yield 1,3-diradical and carbonyl fragments.
    DOI:
    10.1021/jo00101a030
点击查看最新优质反应信息

文献信息

  • Baumstark A. L., Vasquez P. C., Chen Y.-X., J. Org. Chem, 59 (1994) N 22, S 6692-6696
    作者:Baumstark A. L., Vasquez P. C., Chen Y.-X.
    DOI:——
    日期:——
  • Synthesis and Thermolysis of Ketal Derivatives of 3-Hydroxy-1,2-dioxolanes
    作者:A. L. Baumstark、P. C. Vasquez、Y.-X. Chen
    DOI:10.1021/jo00101a030
    日期:1994.11
    3-[(Trimethylsilyl)oxy]-3,4,4,5-tetramethyl-5-phenyl-1,2-dioxolane (2), 3-methoxy-3,4,4,5-tetra-methyl-5-phenyl-1,2-dioxolane (3), and 3-acetoxy-3,4,4,5-tetramethyl-5-phenyl-1 (4) were synthesized from the corresponding 3-hydroxy-1,2-dioxolane (1a) under basic conditions. 3-Acetoxy-4,4-dimethyl-3,5,5-triphenyl-1,2-dioxolane (5) was also synthesized via this approach. Under acidic conditions, 3-hydroxy-1,2-dioxolane la underwent quantitative decomposition to phenol and 3,3-dimethyl-2,4-pentanedione. This competing degradation was dependent on the nature of the substituents at position-5. Methyl groups at position-5 slowed the degradative rearrangement whereas phenyl groups favored it. 3-Methoxy- and 3-(allyloxy)-4,4,5,5-tetramethyl-3-pheny dioxolanes (6, 7) were synthesized under acidic conditions from the appropriate 1,2-dioxolane precursors and the corresponding alcohols. At 60 degrees C, derivatized 1,2-dioxolanes 2-7 were found to be more stable than the corresponding 3-hydroxy-1, 2-dioxolanes. The first order rate constants for the thermolysis of 1,2-dioxolanes 2-7 were determined. Product studies showed that thermolysis of 2-5 yielded pairs of ketones and derivatized carboxylic acids. In addition to R-group migration products, an acetoxy migration product was observed for the thermolysis of 4. Thermolysis of 6 at 60 degrees C in benzene yielded methyl benzoate and pinacolone, quantitatively. Thermolysis of 7 yielded products analogous to those for 6. No evidence for internal trapping of radicals by the carbon-carbon double bond of the allyloxy group in 7 was found. The thermolyis appeared to proceed with peroxy bond homolysis as the rate-determining step. Subsequent beta-scissions of the intermediate 1,5-oxygen diradical with interesting rearrangements that show a high preference for alkyl vs phenyl migration account for the observed product distributions. The results suggest that the beta-scission/ rearrangement mechanism may not be concerted but rather stepwise to yield 1,3-diradical and carbonyl fragments.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐