Lewis Basic Salt-Promoted Organosilane Coupling Reactions with Aromatic Electrophiles
作者:Tyler W. Reidl、Jeffrey S. Bandar
DOI:10.1021/jacs.1c05764
日期:2021.8.11
Lewis basic saltspromote benzyltrimethylsilane coupling with (hetero)aryl nitriles, sulfones, and chlorides as a new route to 1,1-diarylalkanes. This method combines the substrate modularity and selectivity characteristic of cross-coupling with the practicality of a base-promoted protocol. In addition, a Lewis base strategy enables a complementary scope to existing methods, employs stable and easily
A compound of Formula (I),
wherein the substituents are as defined herein, which are useful as kinase inhibitors.
其中取代基如本文所述的公式(I)的化合物,用作激酶抑制剂。
Direct α-Chalcogenation of Aliphatic Carboxylic Acid Equivalents
作者:Aniket Gupta、Ajijur Rahaman、Sukalyan Bhadra
DOI:10.1021/acs.orglett.9b02424
日期:2019.8.2
A novel approach to α-chalcogenation of aliphaticcarboxylicacids has been developed by means of transforming them as the corresponding benzazoles. The catalyst system, consisting of CuI, DMSO, and a base, operates through a unique mechanism to access a range of practically significant thio- and selenoethers that are otherwise challenging to achieve. The applicative potentials have been exemplified
通过将脂肪族羧酸转化为相应的苯唑类,开发了一种将脂肪族羧酸进行 α-硫属元素化的新方法。由 Cu I 、DMSO 和碱组成的催化剂体系通过独特的机制运行,以获取一系列具有实际意义的硫醚和硒醚,否则这些化合物难以实现。应用潜力已通过利用所得硫属化合物作为合成生物学相关分子和合成中间体的前体来举例说明。
Elemental Sulfur-Promoted Oxidative Rearranging Coupling between o-Aminophenols and Ketones: A Synthesis of 2-Alkyl benzoxazoles under Mild Conditions
作者:Thanh Binh Nguyen、Pascal Retailleau
DOI:10.1021/acs.orglett.7b01775
日期:2017.7.21
In the presence of N-methylpiperidine, elemental sulfur was found to act as excellent oxidant in promoting oxidative rearranging coupling between o-aminophenols and ketones. A wide range of 2-alkylbenzoxazoles was obtained under mild conditions.
A unique α-amination approach using various anilines has been developed for arylacetic acids via adaptation as benzazoles. The reaction proceeds through a single electron transfer mechanism utilizing an iron-based catalyst system to access α-(N-arylamino)acetic acid equivalents. Modification of approved drugs, facile cleavage of the benzazole auxiliary, and tolerance of amide linkage forming conditions