摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

heptyl protocatechuate

中文名称
——
中文别名
——
英文名称
heptyl protocatechuate
英文别名
3,4-Dihydroxy-benzoic acid heptyl ester;heptyl 3,4-dihydroxybenzoate
heptyl protocatechuate化学式
CAS
——
化学式
C14H20O4
mdl
——
分子量
252.31
InChiKey
SIGKRGHYHGEXRL-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.5
  • 重原子数:
    18
  • 可旋转键数:
    8
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.5
  • 拓扑面积:
    66.8
  • 氢给体数:
    2
  • 氢受体数:
    4

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    描述:
    原儿茶酸正庚醇N,N'-二环己基碳二亚胺 作用下, 以 四氢呋喃 为溶剂, 以35%的产率得到heptyl protocatechuate
    参考文献:
    名称:
    多功能食品添加剂的分子设计:抗氧化抗真菌剂。
    摘要:
    合成了一系列的3,4-二羟基苯甲酸烷基酯(原儿茶酸酯),并使用2-倍连续肉汤稀释法测定了它们对酿酒酵母的杀真菌活性。3,4-二羟基苯甲酸壬基酯和辛基酯被认为对这种酵母最有效,其杀真菌剂的最低浓度分别为12.5微克/毫升。发现该活性与疏水性烷基链长相关。时间杀灭曲线研究表明,3,4-二羟基苯甲酸壬酯在任何生长阶段均对啤酒酵母有杀真菌作用,且该活性不受pH值的影响。烷基3的杀菌活性 注意到4-二羟基苯甲酸酯具有非特异性破坏天然膜相关功能作为表面活性剂(表面活性剂)并抑制呼吸电子转运的能力。但是,3,4-二羟基苯甲酸壬酯的主要杀真菌活性可能来自其作为表面活性剂的能力。
    DOI:
    10.1021/jf049687n
点击查看最新优质反应信息

文献信息

  • Molecular Design of Multifunctional Food Additives:  Antioxidative Antifungal Agents
    作者:Ken-ichi Nihei、Atsuko Nihei、Isao Kubo
    DOI:10.1021/jf049687n
    日期:2004.8.1
    by pH values. The fungicidal activity of alkyl 3,4-dihydroxybenzoates was noted in combination with their ability to disrupt the native membrane-associated function nonspecifically as surface-active agents (surfactants) and to inhibit the respiratory electron transport. However, the primary fungicidal activity of nonyl 3,4-dihydroxybenzoate likely comes from its ability to act as a surfactant.
    合成了一系列的3,4-二羟基苯甲酸烷基酯(原儿茶酸酯),并使用2-倍连续肉汤稀释法测定了它们对酿酒酵母的杀真菌活性。3,4-二羟基苯甲酸壬基酯和辛基酯被认为对这种酵母最有效,其杀真菌剂的最低浓度分别为12.5微克/毫升。发现该活性与疏水性烷基链长相关。时间杀灭曲线研究表明,3,4-二羟基苯甲酸壬酯在任何生长阶段均对啤酒酵母有杀真菌作用,且该活性不受pH值的影响。烷基3的杀菌活性 注意到4-二羟基苯甲酸酯具有非特异性破坏天然膜相关功能作为表面活性剂(表面活性剂)并抑制呼吸电子转运的能力。但是,3,4-二羟基苯甲酸壬酯的主要杀真菌活性可能来自其作为表面活性剂的能力。
  • Alkyl Hydroxybenzoic Acid Derivatives that Inhibit HIV-1 Protease Dimerization
    作者:O. A. Flausino、L. Dufau、L. O. Regasini、M. S. Petronio、D. H.S. Silva、T. Rose、V. S. Bolzani、M. Reboud-Ravaux
    DOI:10.2174/092986712803251557
    日期:2012.9.1
    The therapeutic potential of gallic acid and its derivatives as anti-cancer, antimicrobial and antiviral agents is well known. We have examined the mechanism by which natural gallic acid and newly synthesized gallic acid alkyl esters and related protocatechuic acid alkyl esters inhibit HIV-1 protease to compare the influence of the aromatic ring substitutions on inhibition. We used Zhang-Poorman's
    没食子酸及其衍生物作为抗癌剂,抗微生物剂和抗病毒剂的治疗潜力是众所周知的。我们已经研究了天然没食子酸和新合成的没食子酸烷基酯以及相关的原儿茶酸烷基酯抑制HIV-1蛋白酶的机制,以比较芳香环取代对抑制的影响。我们使用Zhang-Poorman的动力学分析和荧光探针结合来证明几种没食子酸和蛋白儿茶酸烷基酯通过阻止这种专性同二聚天冬氨酸蛋白酶的二聚作用而不是靶向活性位点来抑制HIV-1蛋白酶。没食子酸酯中的三羟基取代的苯甲酸部分比原儿茶酸酯中的二取代的苯甲酸部分更有利。在这两个系列中,抑制的类型 其机理和抑制效率极大地取决于烷基链的长度:对长度小于8个碳原子的烷基链没有抑制作用。分子动力学模拟证实了动力学数据,并提出没食子酸酯插在两个N和C单体末端之间。他们完成了β-折叠并破坏了二聚酶。最好的没食子酸酯(14个碳原子,K(id)为320 nM)也抑制了多突变蛋白酶MDR-HM。这些结果将有助于合
  • Improvement of Pro-Oxidant Capacity of Protocatechuic Acid by Esterification
    作者:Maria Luiza Zeraik、Maicon S. Petrônio、Dyovani Coelho、Luis Octavio Regasini、Dulce H. S. Silva、Luiz Marcos da Fonseca、Sergio A. S. Machado、Vanderlan S. Bolzani、Valdecir F. Ximenes
    DOI:10.1371/journal.pone.0110277
    日期:——
    account that hydroquinone and related moieties are frequently found in biomolecules and quinone-based chemotherapeutics, our demonstration that esters of protocatechuic acid are specific and potent co-catalysts in their oxidations may be very relevant as a pathway to exacerbate redox cycling reactions, which are usually involved in their biological and pharmacological mechanisms of action.
    酚类化合物的促氧化作用通常与苯氧基自由基的单电子氧化还原电位相关。在这里我们证明,除了它们的氧化性外,疏水性也是一个决定性因素。我们发现原儿茶酸 (P0) 的酯化对其促氧化能力产生了深远的影响。带有包含两个 (P2)、四个 (P4) 和七个 (P7) 碳的烷基链的酯,但没有酸前体 (P0),能够加剧 trolox、α-生育酚和利福平的氧化。这种效果也取决于儿茶酚部分,因为没食子酸和没食子酸丁酯都没有表现出任何促氧化作用。还与夹竹桃素进行了比较,夹竹桃素在其促氧化特性方面具有很好的特征。在 trolox 的共氧化方面,P7 比夹竹桃素更有效。然而,P7 不能共同氧化谷胱甘肽和 NADH,它们是夹竹桃素自由基的目标。正如差分脉冲伏安法实验中峰值电流的强度所表明的那样,在促氧化能力和自由基的稳定性之间发现了相关性。总之,考虑到对苯二酚和相关部分经常存在于生物分子和基于醌的化学治疗剂中,我们证明原
  • Protocatechuic Acid Alkyl Esters: Hydrophobicity As a Determinant Factor for Inhibition of NADPH Oxidase
    作者:C. M.Q.G. de Faria、A. C. Nazare、M. S. Petronio、L. C. Paracatu、M. L Zeraik、L. O. Regasini、D. H.S. Silva、L. M. da Fonseca、V. F. Ximenes
    DOI:10.2174/092986712803341557
    日期:2012.10.1
    This study presents the increased efficiency of NADPH oxidase inhibition produced by esterification of protocatechuic acid (P0). Alkyl esters bearing chain lengths of 4 (P4), 7 (P7) and 10 (P10) carbons were synthesized and their oxidation potential, hydrophobicity, antiradical activity, inhibition of superoxide anion (O2 °-), and the abilities to affect hypochlorous acid (HOCl) production by leukocytes and inhibit myeloperoxidase (MPO) chlorinating activity were studied. The increased hydrophobicity (logP, 0.81-4.82) of the esters was not correlated with a significant alteration in their oxidation potential (0.222-0.298 V). However, except for P10, the esters were ~ 2-fold more effective than the acid precursor for the scavenging of DPPH and peroxyl radicals. The esters were strong inhibitors of O2 °- released by activated neutrophils (PMNs) and peripheral blood mononuclear cells (PBMCs). A correlation was found between the carbon chain length and the relative inhibitory potency. P7, the most active ester, was ~ 10-fold more efficient as NADPH oxidase inhibitor than apocynin. The esters strongly inhibited the release of HOCl by PMNs, which was a consequence of the inhibition of NADPH oxidase activity in these cells. In conclusion, as effective inhibitors of NADPH oxidase, the esters of protocatechuic acid are promising drugs for treatment of chronic inflammatory diseases. Moreover, this is the first demonstration that, besides the redox active moiety, the hydrophobicity can also be a determinant factor for the design of NADPH oxidase inhibitors.
    本研究展示了通过对儿茶酸(P0)进行酯化所产生的NADPH氧化酶抑制效率的提高。合成了链长分别为4(P4)、7(P7)和10(P10)碳的烷基酯,研究了它们的氧化潜力、疏水性、抗自由基活性、对超氧阴离子(O2 °-)的抑制以及对白细胞产生次氯酸(HOCl)和抑制髓过氧化物酶(MPO)氯化活性的影响。这些酯的疏水性(logP,0.81-4.82)与其氧化潜力(0.222-0.298 V)之间没有显著关联。然而,除了P10外,这些酯在清除DPPH和过氧自由基方面比酸前体有效约2倍。这些酯对由活化的中性粒细胞(PMNs)和外周血单核细胞(PBMCs)释放的O2 °-具有强抑制作用。研究发现,碳链长度与相对抑制效力之间存在相关性。P7是最活跃的酯,其作为NADPH氧化酶抑制剂的效率约为阿波西宁的10倍。这些酯显著抑制了PMNs释放HOCl,这归因于对这些细胞中NADPH氧化酶活性的抑制。总之,作为有效的NADPH氧化酶抑制剂,儿茶酸酯类化合物在慢性炎症疾病治疗中显示出良好的前景。此外,这是首次证明,除了具有氧化还原活性的基团外,疏水性也可以作为NADPH氧化酶抑制剂设计的决定性因素。
  • Synthesis and Antityrosinase Activities of Alkyl 3,4-Dihydroxybenzoates
    作者:Zhi-Zhen Pan、Hua-Liang Li、Xiao-Jie Yu、Qi-Xuan Zuo、Guo-Xing Zheng、Yan Shi、Xuan Liu、Yi-Ming Lin、Ge Liang、Qin Wang、Qing-Xi Chen
    DOI:10.1021/jf200990g
    日期:2011.6.22
    In insects, tyrosinase plays important roles in normal developmental processes, such as cuticular tanning, scleration, wound healing, production of opsonins, encapsulation and nodule formation for defense against foreign pathogens. Thus, tyrosinase may be regarded as a potential candidate for novel bioinsecticide development. A family of alkyl 3,4-dihydroxybenzoates (C(6)-C(9)), new tyrosinsase inhibitors, were synthesized. Their inhibitory effects on the activity of tyrosinase have been investigated. The results showed all of them could inhibit the activity of tyrosianse effectively. The order of potency was nonyl 3,4-dihydroxybenzoate (C(9)DB) > octyl 3,4-dihydroxybenzoate(C(8)DB) > heptyl 3,4-dihydroxybenzoate(C(7)DB) > hexyl 3,4-dihydroxybenzoate (C(6)DB). The kinetic analysis of these four compounds on tyrosinase was taken to expound their inhibitory mechanism. The research of the control of insects in agriculture was taken as C(6)DB for example. C(6)DB could inhibit the development and molting of Plutella xylostella effectively. To clarify its insecticidal mechanism, we researched the expression of tyrosinase in the P. xylostella treated with C(6)DB by real-time quantitative PCR. The results showed C(6)DB could inhibit the expression of tyrosinase in the P. xylostella as expected.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐