摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-(3,6,9,12-tetraoxapentadec-14-yn-1-yl)-2,3-dihydro-1Hisoindole-1,3-dione | 1422540-93-9

中文名称
——
中文别名
——
英文名称
2-(3,6,9,12-tetraoxapentadec-14-yn-1-yl)-2,3-dihydro-1Hisoindole-1,3-dione
英文别名
1H-Isoindole-1,3(2H)-dione, 2-(3,6,9,12-tetraoxapentadec-14-yn-1-yl)-;2-[2-[2-[2-(2-prop-2-ynoxyethoxy)ethoxy]ethoxy]ethyl]isoindole-1,3-dione
2-(3,6,9,12-tetraoxapentadec-14-yn-1-yl)-2,3-dihydro-1Hisoindole-1,3-dione化学式
CAS
1422540-93-9
化学式
C19H23NO6
mdl
——
分子量
361.395
InChiKey
QLTWVIGUOXEXNP-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    483.8±40.0 °C(Predicted)
  • 密度:
    1.213±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    1
  • 重原子数:
    26
  • 可旋转键数:
    13
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.47
  • 拓扑面积:
    74.3
  • 氢给体数:
    0
  • 氢受体数:
    6

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    In vivo programming of endogenous antibodies via oral administration of adaptor ligands
    摘要:
    Vaccination is a reliable method of prophylaxis and a crucial measure for public health. However, the majority of vaccines cannot be administered orally due to their degradation in the harsh gut environment or inability to cross the GI tract. In this study, we report the first proof-of-concept study of orally producible chemically programmed antibodies via specific conjugation of adaptor ligands to endogenous antibodies, in vivo. Pre-immuniztion with 2,4-dinitrophenyl (DNP), or the reactive hapten, 1,3-diketone (DK), or a novel reactive hapten, vinyl sulfone (VS) in mice, followed by oral administration of adaptor ligands composed of the hapten and biotin to the pre-immunized mice resulted in successful in vivo formation of the biotin-hapten-antibody complexes within 2 h. Pharmacokinetic evaluations revealed that apparent serum concentrations of programmed antibodies were up to 144 nM and that the serum half-lives reached up to 34.4 h. These findings show promise for the future development of orally bioavailable drug-hapten-antibody complexes as a strategy to quickly and easily modulate immune targets for aggressive pathogens as well as cancer. (C) 2017 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.bmc.2017.09.010
  • 作为产物:
    参考文献:
    名称:
    Efficient synthesis of diverse heterobifunctionalized clickable oligo(ethylene glycol) linkers: potential applications in bioconjugation and targeted drug delivery
    摘要:
    在此,我们描述了一系列适用于叠氮-炔烃点击化学的异双功能寡(乙烯)醇(OEG)连接子 sequential synthesis,用于生物偶联化学应用。这些生物正交连接子的合成是通过将OEG中的一个羟基转化为炔烃或叠氮功能团,进而进行去对称化来完成的。OEG上的远端羟基则通过4-硝基苯基碳酸酯或美克酸酯(–OMs)基团进行活化。–OMs功能团作为一种有用的前驱体,用于形成包含不同高度反应性末端基团的多种异双功能化OEG连接子,例如:碘、–NH2、–SH和马来酰亚胺,这些基团与炔烃或叠氮功能团具有正交性。此外,炔烃和叠氮末端的OEG可通过采用Cu(I)催化的1,3-偶极环加成点击反应生成更大的离散聚(乙烯)醇(PEG)连接子(例如,PEG16和PEG24)。通过将整合素(αvβ3)受体靶向肽环(Arg-Gly-Asp-D-Phe-Lys)(cRGfKD)和荧光探针硫酸铑胺B附着于这些可点击的异双功能OEG中,证明了它们在生物偶联化学中的实用性。本文所呈现的合成方法适合于从易得且廉价的起始材料大规模生产多种新型异双功能化OEG。
    DOI:
    10.1039/c2ob26968f
点击查看最新优质反应信息

文献信息

  • Systematic Potency and Property Assessment of VHL Ligands and Implications on PROTAC Design
    作者:Johannes Krieger、Fiona J. Sorrell、Ansgar A. Wegener、Birgitta Leuthner、Fouzia Machrouhi‐Porcher、Martin Hecht、Eva M. Leibrock、Juliane E. Müller、Jonathan Eisert、Ingo V. Hartung、Sarah Schlesiger
    DOI:10.1002/cmdc.202200615
    日期:——
    Our study describes a systematic evaluation of structure-activity-relationships and structure-property-relationships for VHL ligand designs. With a particular focus on exit vector analysis, we used our gained knowledge to design a small library of highly potent BRD4-PROTACs with favorable molecular properties and improved degradation potency compared to MZ1.
    我们的研究描述了对 VHL 配体设计的结构-活性-关系和结构-特性-关系的系统评估。我们特别关注退出向量分析,利用我们获得的知识设计了一个小型高效 BRD4-PROTAC 库,与 MZ1 相比,具有良好的分子特性和更高的降解效力。
查看更多

同类化合物

(1Z,3Z)-1,3-双[[((4S)-4,5-二氢-4-苯基-2-恶唑基]亚甲基]-2,3-二氢-5,6-二甲基-1H-异吲哚 鲁拉西酮杂质33 鲁拉西酮杂质07 马吲哚 颜料黄110 顺式-六氢异吲哚盐酸盐 顺式-2-[(1,3-二氢-1,3-二氧代-2H-异吲哚-2-基)甲基]-N-乙基-1-苯基环丙烷甲酰胺 顺式-2,3,3a,4,7,7a-六氢-1H-异吲哚 顺-N-(4-氯丁烯基)邻苯二甲酰亚胺 降莰烷-2,3-二甲酰亚胺 降冰片烯-2,3-二羧基亚胺基对硝基苄基碳酸酯 降冰片烯-2,3-二羧基亚胺基叔丁基碳酸酯 阿胍诺定 阿普斯特降解杂质 阿普斯特杂质FA 阿普斯特杂质68 阿普斯特杂质29 阿普斯特杂质27 阿普斯特杂质26 阿普斯特杂质19 阿普斯特杂质08 阿普斯特杂质03 阿普斯特杂质 阿普斯特二聚体杂质 阿普斯特 防焦剂MTP 铝酞菁 铁(II)1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-十六氟-29H,31H-酞菁 铁(II)2,9,16,23-四氨基酞菁 钠S-(2-{[2-(1,3-二氧代-1,3-二氢-2H-异吲哚-2-基)乙基]氨基}乙基)氢硫代磷酸酯 酞酰亚胺-15N钾盐 酞菁锡 酞菁二氯化硅 酞菁 单氯化镓(III) 盐 酞美普林 邻苯二甲酸亚胺 邻苯二甲酰基氨氯地平 邻苯二甲酰亚胺,N-((吗啉)甲基) 邻苯二甲酰亚胺阴离子 邻苯二甲酰亚胺钾盐 邻苯二甲酰亚胺钠盐 邻苯二甲酰亚胺观盐 邻苯二亚胺甲基磷酸二乙酯 那伏莫德 过氧化氢,2,5-二氢-5-苯基-3H-咪唑并[2,1-a]异吲哚-5-基 达格吡酮 诺非卡尼 螺[环丙烷-1,1'-异二氢吲哚]-3'-酮 螺[异吲哚啉-1,4'-哌啶]-3-酮盐酸盐 葡聚糖凝胶G-25