摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

spiro-adamantyl-1,2-dioxetanone | 187473-09-2

中文名称
——
中文别名
——
英文名称
spiro-adamantyl-1,2-dioxetanone
英文别名
spiroadamantyl-1,2-dioxetanone;spiro-adamantyl α-peroxy lactone;Spiro[adamantane-2,4'-dioxetane]-3'-one
spiro-adamantyl-1,2-dioxetanone化学式
CAS
187473-09-2
化学式
C11H14O3
mdl
——
分子量
194.23
InChiKey
UEWWTYOIQFWUMB-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.1
  • 重原子数:
    14
  • 可旋转键数:
    0
  • 环数:
    5.0
  • sp3杂化的碳原子比例:
    0.91
  • 拓扑面积:
    35.5
  • 氢给体数:
    0
  • 氢受体数:
    3

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    三苯基膦spiro-adamantyl-1,2-dioxetanone氘代氯仿 为溶剂, 反应 0.05h, 以50%的产率得到
    参考文献:
    名称:
    Reaction of α-Peroxy Lactones with C, N, P, and S Nucleophiles:  Adduct Formation and Nucleophile Oxidation by Nucleophilic Attack at and Biphilic Insertion into the Peroxide Bond
    摘要:
    The reactions of the alpha-peroxy lactones 1 with a variety of carbon, nitrogen, phosphorus, and sulfur nucleophiles yield, on S(N)2 attack at the more electrophilic alkoxy oxygen of the peroxide bond, diverse addition and oxygen transfer products, together with the catalytic Grob-type fragmentation. The nature of the nucleophile determines the fate of the open-chain intermediate I. Thus, protic nucleophiles such as primary and secondary amines and thiols lead to the second intermediate I' through proton shift subsequent to the S(N)2 step, while nonprotic amines and sulfides, as well as diazoalkanes, lead to oxidation products or to the cycloadducts 10-15. Trivalent phosphorus nucleophiles such as phosphines and phosphites and diisopropyl sulfoxylate prefer biphilic insertion, as documented by the fact that the nucleophilicity rather than the steric demand of these reagents controls their reactivity. The labile adducts undergo a variety of transformations to the final stable products. For protic nucleophiles, the amine adducts 5 and 6 are sufficiently persistent for isolation, whereas the sulfenic esters formed by thiol addition are further oxidized to the sulfinic esters 7 and 8 or react with excess thiol to the corresponding disulfides. For aprotic nucleophiles, the dipolar intermediates I decompose into acetone and CO2 with regeneration of the nucleophile (Grob-type fragmentation), as seen for DABCO and pyridine N-oxide, or they extrude the alpha-lactone to afford the oxygen transfer product. The corresponding ketones, pyridine N-oxide, sulfoxides, and sulfones are obtained by this route from diazoalkanes, pyridine, sulfides and sulfoxides. Additionally, the diazoalkane intermediates I also cyclize to the cycloadducts 10-12. The thermally labile phosphorus adducts 13-15, which were observed by low-temperature NMR spectroscopy, decompose to the alpha-lactone and the phosphorus oxides. Analogously, diisopropyl sulfite is obtained from the sulfoxylate adduct. As for the fate of the alpha-lactones (the reduction products of the alpha-peroxy lactones), the dimethyl derivative either oligomerizes to the oligoester 2a or is trapped by methanol as the alpha-methoxy acid 4a, while the spiroadamantyl alpha-lactone decarbonylates to adamantanone.
    DOI:
    10.1021/jo962039l
  • 作为产物:
    描述:
    参考文献:
    名称:
    用于化学发光研究的不稳定环状过氧化物的合成
    摘要:
    环状四元环过氧化物是各种化学和生物发光转化中重要的高能中间体。具体而言,α-过氧内酯(1,2-二氧杂环丁烷)已被视为有效萤火虫生物发光的模型系统。但是,这种高度不稳定的化合物的制备非常困难,因此,只有很少的研究小组能够研究这些物质的性质。在这项研究中,报告了三种1,2-二氧杂环丁酮的合成,纯化和表征,并提供了已知的合成过氧化二苯甲酰的详细方法,过氧化二苯甲酰是另一种重要的化学激发电子模型。对于大多数这些过氧化物,此处首次报道了完整的光谱表征。
    DOI:
    10.1590/s0103-50532012001100018
点击查看最新优质反应信息

文献信息

  • Solvent polarity influence on chemiexcitation efficiency of inter and intramolecular electron-transfer catalyzed chemiluminescence
    作者:Muhammad Khalid、Sergio P. Souza、Maidileyvis C. Cabello、Fernando H. Bartoloni、Luiz Francisco M.L. Ciscato、Erick L. Bastos、Omar A.A. El Seoud、Wilhelm J. Baader
    DOI:10.1016/j.jphotochem.2022.114161
    日期:2022.12
    efficient in producing excited states – the peroxyoxalate reaction through an intermolecular CIEEL, and the induced decomposition of a phenoxy-substituted 1,2-dioxetane derivative via intramolecular CIEEL. These four CIEEL systems are studied in binary solvent mixtures with similar viscosity but different polarity, as measured by the empirical solvent polarity parameter ET(30). Reaction rate constants for all
    决定化学发光和生物发光转化效率的参数是实验和理论研究的连续问题。从这个意义上说,我们在此报告了溶剂极性对四种化​​学引发电子交换发光 (CIEEL) 系统影响的研究。其中两个包括效率低的分子间 CIEEL 系统——过氧化二苯甲酰和 spiroadamantyl-1,2-dioxetanone 的催化分解;另外两种在产生激发态方面非常有效——通过分子间 CIEEL 的过氧草酸盐反应,以及通过诱导分解苯氧基取代的 1,2-二氧杂环丁烷衍生物分子内 CIEEL。这四种 CIEEL 系统在粘度相似但极性不同的二元溶剂混合物中进行了研究,由经验溶剂极性参数E T测量(30)。所有系统的反应速率常数都随着极性的增加而增加,表明在这些转变的限速步骤中发生了电子或电荷转移。对于分子间系统,单线态​​量子产率通常随着中等极性上升到最大值,而随着极性较高而下降。这与通过溶剂化在最佳介质极性下稳定自由基离子对中
  • SILICON-BASED ENERGY STORAGE DEVICES WITH ELECTROLYTE ADDITIVE COMPOUNDS
    申请人:Enevate Corporation
    公开号:US20200388880A1
    公开(公告)日:2020-12-10
    Electrolytes and electrolyte additives for energy storage devices are disclosed. The energy storage device comprises a first electrode and a second electrode, where one or both of the first electrode and the second electrode is a Si-based electrode, a separator between the first electrode and the second electrode, an electrolyte, and at least one electrolyte additive compound selected from a carbonate, oxalate, trioxidane, peroxide, peroxoate, dioxetanone, oxepane dione, oxetane dione, anhydride, oxalate or 1,4-dioxane-2,3-dione; each of which may be optionally substituted.
  • Reaction of α-Peroxy Lactones with C, N, P, and S Nucleophiles:  Adduct Formation and Nucleophile Oxidation by Nucleophilic Attack at and Biphilic Insertion into the Peroxide Bond
    作者:Waldemar Adam、Lluís Blancafort
    DOI:10.1021/jo962039l
    日期:1997.3.1
    The reactions of the alpha-peroxy lactones 1 with a variety of carbon, nitrogen, phosphorus, and sulfur nucleophiles yield, on S(N)2 attack at the more electrophilic alkoxy oxygen of the peroxide bond, diverse addition and oxygen transfer products, together with the catalytic Grob-type fragmentation. The nature of the nucleophile determines the fate of the open-chain intermediate I. Thus, protic nucleophiles such as primary and secondary amines and thiols lead to the second intermediate I' through proton shift subsequent to the S(N)2 step, while nonprotic amines and sulfides, as well as diazoalkanes, lead to oxidation products or to the cycloadducts 10-15. Trivalent phosphorus nucleophiles such as phosphines and phosphites and diisopropyl sulfoxylate prefer biphilic insertion, as documented by the fact that the nucleophilicity rather than the steric demand of these reagents controls their reactivity. The labile adducts undergo a variety of transformations to the final stable products. For protic nucleophiles, the amine adducts 5 and 6 are sufficiently persistent for isolation, whereas the sulfenic esters formed by thiol addition are further oxidized to the sulfinic esters 7 and 8 or react with excess thiol to the corresponding disulfides. For aprotic nucleophiles, the dipolar intermediates I decompose into acetone and CO2 with regeneration of the nucleophile (Grob-type fragmentation), as seen for DABCO and pyridine N-oxide, or they extrude the alpha-lactone to afford the oxygen transfer product. The corresponding ketones, pyridine N-oxide, sulfoxides, and sulfones are obtained by this route from diazoalkanes, pyridine, sulfides and sulfoxides. Additionally, the diazoalkane intermediates I also cyclize to the cycloadducts 10-12. The thermally labile phosphorus adducts 13-15, which were observed by low-temperature NMR spectroscopy, decompose to the alpha-lactone and the phosphorus oxides. Analogously, diisopropyl sulfite is obtained from the sulfoxylate adduct. As for the fate of the alpha-lactones (the reduction products of the alpha-peroxy lactones), the dimethyl derivative either oligomerizes to the oligoester 2a or is trapped by methanol as the alpha-methoxy acid 4a, while the spiroadamantyl alpha-lactone decarbonylates to adamantanone.
  • Synthesis of unstable cyclic peroxides for chemiluminescence studies
    作者:Fernando H. Bartoloni、Marcelo A. de Oliveira、Felipe A. Augusto、Luiz Francisco M. L. Ciscato、Erick L. Bastos、Wilhelm J. Baader
    DOI:10.1590/s0103-50532012001100018
    日期:——
    Cyclic four-membered ring peroxides are important high-energy intermediates in a variety of chemi and bioluminescence transformations. Specifically, α-peroxylactones (1,2-dioxetanones) have been considered as model systems for efficient firefly bioluminescence. However, the preparation of such highly unstable compounds is extremely difficult and, therefore, only few research groups have been able to
    环状四元环过氧化物是各种化学和生物发光转化中重要的高能中间体。具体而言,α-过氧内酯(1,2-二氧杂环丁烷)已被视为有效萤火虫生物发光的模型系统。但是,这种高度不稳定的化合物的制备非常困难,因此,只有很少的研究小组能够研究这些物质的性质。在这项研究中,报告了三种1,2-二氧杂环丁酮的合成,纯化和表征,并提供了已知的合成过氧化二苯甲酰的详细方法,过氧化二苯甲酰是另一种重要的化学激发电子模型。对于大多数这些过氧化物,此处首次报道了完整的光谱表征。
查看更多

同类化合物

全氟-1,2-二氧杂环丁烷 4-羟基甲基-3,3,4-三甲基-1,2-二氧杂环丁烷 3,3,4,4-四甲基-1,2-二氧杂环丁烷 2,2'-环二氧-2,2'-联金刚烷 1,2-二氧杂环丁烷 3-tert-butoxymethyl-3,4,4-trimethyl-1,2-dioxetane vinylidene carbonate 1,2-Dioxetan-3-one 3-methyl-3-(1-butyl)-1,2-dioxetane 3-methyl-3-ethyl-1,2-dioxetane 3-methyl-3-(1-propyl)-1,2-dioxetane 3-methyl-1,2-dioxetane trans-3,4-dimethyl-1,2-dioxetane cis-3,4-dimethyl-1,2-dioxetane cis,trans-3,4-dimethyl-1,2-dioxetane tetraethyldioxetane tetramethyldioxetane 3,3-diethyl-1,2-dioxetane 3,3-dimethyl-4-ethyl-1,2-dioxetane 3-<<(chlorosulfonyl)carbamoyloxy>methyl>-3,4,4-trimethyl-1,2-dioxetane (3,4,4-Trimethyldioxetan-3-yl)methyl acetate spiro-cyclopentyl-1,2-dioxetanone 1,4,6-Tri-tert-butyl-2,3-dioxa-5-azabicyclo[2.2.0]hex-5-ene 3,3-Di(propan-2-yl)-1,2-dioxetane 1-(4,4-dimethyl-[1,2]dioxetan-3-yl)-ethanone 3-Butyl-3,4,4-trimethyl-1,2-dioxetane (3R,4S)-3,4-Dimethoxy-1,2-dioxetane N,N-Dimethylmethanamine--1,2-dioxetane (1/1) (3S,4S)-3,4-Dibutyl-[1,2]dioxetane (3S,4S)-3,4-Dipropyl-[1,2]dioxetane trans-3,4-diethyl-1,2-dioxetane 1,3-dioxetane 3,3-Dimethyl-1,2-dioxetan 3,3-pentamethylene-1,2-dioxetane tert.-Butyl-α-peroxylacton (3-Methyl-1,2-dioxa-spiro[3.5]non-3-yl)-methanol (3R,4S)-3,4-Dipropyl-[1,2]dioxetane (3R,4S)-3,4-Dibutyl-[1,2]dioxetane trimethyl-[1,2]dioxetane cis-3.4-diethyl-1.2-dioxetane tetra(methyl-d3)-1,2-dioxetane 3,3-dimethyl-4<2-methyl-1-propenyl>-1,2-dioxetane 3-methyl-3-(2-propyl)-1,2-dioxetane 3-methyl-3-tert-butyl-1,2-dioxetane 3-(ethoxymethyl)-3,4,4-trimethyl-1,2-dioxetane cyclohexene hydroperoxide (4S)-4-(1-hydroxy-2-methylpropan-2-yl)dioxetan-3-one (4R)-4-(1-hydroxy-2-methylpropan-2-yl)dioxetan-3-one [3-(Sulfanylmethyl)-2,4-dioxabicyclo[1.1.0]butan-1-yl]methanethiol (7S)-2,2-dimethyl-1,3-dioxaspiro[3.4]oct-5-en-7-ol