摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

triethyl 4,4',4''-methanetriyltris(2,3,5,6-tetrachlorobenzoate) | 940273-67-6

中文名称
——
中文别名
——
英文名称
triethyl 4,4',4''-methanetriyltris(2,3,5,6-tetrachlorobenzoate)
英文别名
tris(2,3,5,6-tetrachloro-4-ethoxycarbonyl-phenyl)methane
triethyl 4,4',4''-methanetriyltris(2,3,5,6-tetrachlorobenzoate)化学式
CAS
940273-67-6
化学式
C28H16Cl12O6
mdl
——
分子量
873.867
InChiKey
XZWBZVZDVUQTCQ-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    13.24
  • 重原子数:
    46.0
  • 可旋转键数:
    9.0
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.25
  • 拓扑面积:
    78.9
  • 氢给体数:
    0.0
  • 氢受体数:
    6.0

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    全氯三芳基甲基三羧酸基团(PTMTC)及其13 C标记的类似物(13 C-PTMTC)的合成和EPR光谱表征†
    摘要:
    制备了在中心碳原子上被13 C标记为50%的亲水性三(四氯三芳基)甲基(四氯-TAM)自由基。通过连续波和脉冲X波段电子顺磁光谱(EPS)对同位素同位素自由基的混合物进行了表征。对于计划中的制药和医疗应用,研究了在水性缓冲液,DMSO,水-甲醇和水-甘油混合物中,氧气,粘度,温度和pH值对EPR线宽的定量影响。在体内条件下,可以忽略pH。水溶液中12 C同位素单EPR谱线的宽度与氧气有着明显的相关性,而旋转运动(粘度)的变化仅在分子中心碳的双峰线中可以观察到。13 C同位素分子。事实证明,四氯-TAM作为固体非常稳定。通过热退火定量测定其热衰减。朝向抗坏血酸作为还原剂和朝向卵母细胞提取物,其半衰期约为1。60和10分钟。因此,对于体内应用而言,50%的13 C四氯TAM适用于在制剂(例如纳米胶囊)中进行选择性和同时的氧和大粘度测量。
    DOI:
    10.1039/c6cp07200c
  • 作为产物:
    描述:
    1,2,4,5-四氯苯 在 aluminum (III) chloride 、 正丁基锂四甲基乙二胺 作用下, 以 四氢呋喃 为溶剂, 反应 17.75h, 生成 triethyl 4,4',4''-methanetriyltris(2,3,5,6-tetrachlorobenzoate)
    参考文献:
    名称:
    了解全氯三苯甲基和芬兰型三苯甲基自由基的g张量。
    摘要:
    精确测量了冷冻溶液中全氯三苯甲基和四硫代三芳基甲基的285 GHz EPR光谱。已经通过DFT计算研究了它们的分子结构与它们的g-张量之间的关系,结果表明自中心亚甲基碳的自旋密度离域化程度是确定g的重要决定因素。-各向异性。特别地,相对于中心碳在2和6位的Cl或S杂原子上的少量自旋密度具有最强的影响。此外,这些杂原子上的自旋密度的量以及由此的各向异性可以通过在4位的羧酸酯基的质子化(酯化)状态来调节。这些结果为持久三苯甲基自由基的g各向异性以及如何对其进行调节提供了独特的见解。
    DOI:
    10.1039/d0cp03626a
点击查看最新优质反应信息

文献信息

  • Synthesis, Characterization, and Nanoencapsulation of Tetrathiatriarylmethyl and Tetrachlorotriarylmethyl (Trityl) Radical Derivatives—A Study To Advance Their Applicability as in Vivo EPR Oxygen Sensors
    作者:Juliane Frank、Marwa Elewa、Mohamed M. Said、Hosam A. El Shihawy、Mohamed El-Sadek、Diana Müller、Annette Meister、Gerd Hause、Simon Drescher、Hendrik Metz、Peter Imming、Karsten Mäder
    DOI:10.1021/acs.joc.5b00918
    日期:2015.7.2
    Tissue oxygenation plays an important role in the pathophysiology of various diseases and is often a marker of prognosis and therapeutic response. EPR (ESR) is a suitable noninvasive oximetry technique. However, to reliably deploy soluble EPR probes as oxygen sensors in complex biological systems, there is still a need to investigate and improve their specificity, sensitivity, and stability. We reproducibly synthesized various derivatives of tetrathiatriarylmethyl and tetrachlorotriarylmethyl (trityl) radicals. Hydrophilic radicals were investigated in aqueous solution mimicking physiological conditions by, e.g., variation of viscosity and ionic strength. Their specificity was satisfactory, but the oxygen sensitivity was low. To enhance the capability of trityl radicals as oxygen sensors, encapsulation into oily core nanocapsules was performed. Thus, different lipophilic triesters were prepared and characterized in oily solution employing oils typically used in drug formulations, i.e., middle-chain triglycerides and isopropyl myristate. Our screening identified the deuterated ethyl ester of D-TAM (radical 13) to be suitable. It had an extremely narrow single EPR line under anoxic conditions and excellent oxygen sensitivity. After encapsulation, it retained its oxygen responsiveness and was protected against reduction by ascorbic acid. These biocompatible and highly sensitive nanosensors offer great potential for future EPR oximetry applications in preclinical research.
  • Trityl radicals in perfluorocarbon emulsions as stable, sensitive, and biocompatible oximetry probes
    作者:Ilirian Dhimitruka、Yasmin Alsayed Alzarie、Craig Hemann、Alexandre Samouilov、Jay L. Zweier
    DOI:10.1016/j.bmcl.2016.10.066
    日期:2016.12
    EPR oximetry with the use of trityl radicals can enable sensitive O-2 measurement in biological cells and tissues. However, in vitro cellular and in vivo biological applications are limited by rapid trityl probe degradation or biological clearance and the need to enhance probe O-2 sensitivity. We synthesized novel perfluorocarbon (PFC) emulsions, similar to 200 nm droplet size, containing esterified perchlorinated triphenyl methyl (PTM) radicals dispersed in physiological aqueous buffers. These formulations exhibit excellent EPR signal stability, over 20-fold greater than free PTM probes, with high oxygen sensitivity similar to 17 mG/mmHg enabling pO(2) measurement in aqueous solutions or cell suspensions with sensitivity > 0.5 mmHg. Thus, PFC-PTM probes hold great promise to enable combined O-2 delivery and sensing as needed to restore or enhance tissue oxygenation in disease. (C) 2016 Elsevier Ltd. All rights reserved.
  • Synthesis and characterization of a perchlorotriphenylmethyl (trityl) triester radical: A potential sensor for superoxide and oxygen in biological systems
    作者:Vinh Dang、Jinhua Wang、Song Feng、Christophe Buron、Frederick A. Villamena、Peng George Wang、Periannan Kuppusamy
    DOI:10.1016/j.bmcl.2007.04.070
    日期:2007.7
    Synthesis and characterization of an inert perchlo rotriphenylmethyl triester radical, PTM-TE, are reported. PTM-TE was prepared by a facile 3-step synthesis using Friedel-Crafts reaction of tetrachlorobenzene with chloroform followed by ethoxycarbonylation and subsequent oxidation. PTM-TE is paramagnetic and exhibits a single sharp EPR spectrum. In solution, the EPR linewidth of PTM-TE is highly sensitive to the dissolved oxygen content, thus enabling accurate measurement of oxygen concentration (oximetry). In addition, the radical also shows high reactivity towards superoxide. The ester radical has the potential for use as a high-sensitive probe for determination of oxygen concentration and superoxide in biological systems. (C) 2007 Elsevier Ltd. All rights reserved.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S,S)-邻甲苯基-DIPAMP (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(-)-4,12-双(二苯基膦基)[2.2]对环芳烷(1,5环辛二烯)铑(I)四氟硼酸盐 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(4-叔丁基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(3-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-4,7-双(3,5-二-叔丁基苯基)膦基-7“-[(吡啶-2-基甲基)氨基]-2,2”,3,3'-四氢1,1'-螺二茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (R)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4S,4''S)-2,2''-亚环戊基双[4,5-二氢-4-(苯甲基)恶唑] (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (3aR,6aS)-5-氧代六氢环戊基[c]吡咯-2(1H)-羧酸酯 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[((1S,2S)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1S,2S,3R,5R)-2-(苄氧基)甲基-6-氧杂双环[3.1.0]己-3-醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (1-(2,6-二氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙蒿油 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫-d6 龙胆紫