Novel selective thiadiazine DYRK1A inhibitor lead scaffold with human pancreatic β-cell proliferation activity
作者:Kunal Kumar、Peter Man-Un Ung、Peng Wang、Hui Wang、Hailing Li、Mary K. Andrews、Andrew F. Stewart、Avner Schlessinger、Robert J. DeVita
DOI:10.1016/j.ejmech.2018.08.007
日期:2018.9
The Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A (DYRK1A) is an enzyme that has been implicated as an important drug target in various therapeutic areas, including neurological disorders (Down syndrome, Alzheimer's disease), oncology, and diabetes (pancreatic beta-cell expansion). Current small molecule DYRK1A inhibitors are ATP-competitive inhibitors that bind to the kinase in an active conformation. As a result, these inhibitors are promiscuous, resulting in pharmacological side effects that limit their therapeutic applications. None are in clinical trials at this time. In order to identify a new DYRK1A inhibitor scaffold, we constructed a homology model of DYRK1A in an inactive, DFG-out conformation. Virtual screening of 2.2 million lead-like compounds from the ZINC database, followed by in vitro testing of selected 68 compounds revealed 8 hits representing 5 different chemical classes. We chose to focus on one of the hits from the computational screen, thiadiazine I which was found to inhibit DYRK1A with IC50 of 9.41 mu m (K-d = 7.3 mu M). Optimization of the hit compound 1, using structure-activity relationship (SAR) analysis and in vitro testing led to the identification of potent thiadiazine analogs with significantly improved binding as compared to the initial hit (K-d = 71-185 nM). Compound 3-5 induced human beta-cell proliferation at 5 mu M while showing selectivity for DYRK1A over DYRK1B and DYRK2 at 10 mu M. This newly developed DYRK1A inhibitor scaffold with unique kinase selectivity profiles has potential to be further optimized as novel therapeutics for diabetes. (C) 2018 Published by Elsevier Masson SAS.
Systematic Structure-Activity Relationship (SAR) Exploration of Diarylmethane Backbone and Discovery of A Highly Potent Novel Uric Acid Transporter 1 (URAT1) Inhibitor
In order to systematically explore and better understand the structure-activityrelationship (SAR) of a diarylmethane backbone in the design of potent uric acid transporter 1 (URAT1) inhibitors, 33 compounds (1a–1x and 1ha–1hi) were designed and synthesized, and their in vitro URAT1 inhibitory activities (IC50) were determined. The three-round systematic SAR exploration led to the discovery of a highly