Incorporation of an Amide into 5-Phosphonoalkyl-6-d-ribitylaminopyrimidinedione Lumazine Synthase Inhibitors Results in an Unexpected Reversal of Selectivity for Riboflavin Synthase vs Lumazine Synthase
摘要:
Several analogues of a hypothetical intermediate in the reaction catalyzed by lumazine synthase were synthesized and tested as inhibitors of both Bacillus subtilis lumazine synthase and Escherichia coli riboflavin synthase. The new compounds were designed by replacement of a two-carbon fragment of several 5-phosphonoalkyl-6-D-ribitylaminopyrimidinedione lumazine synthase inhibitors with an amide linkage that was envisioned as an analogue of a Schiff base moiety of a hypothetical intermediate in the enzyme-catalyzed reaction. The incorporation of the amide group led to an unexpected reversal in selectivity for inhibition of lumazine synthase vs riboflavin synthase. Whereas the parent 5-phosphonoalkyl-6-D-ribitylaminopyrimidinediones were lumazine synthase inhibitors and did not inhibit riboflavin synthase, the amide-containing derivatives inhibited riboflavin synthase and were only very weak or inactive as lumazine synthase inhibitors. Molecular modeling of inhibitor-lumazine synthase complexes did not reveal a structural basis for these unexpected findings. However, molecular modeling of one of the inhibitors with E. coli riboflavin synthase demonstrated that the active site of the enzyme could readily accommodate two ligand molecules.
Isoprenoid Biosynthesis via the Methylerythritol Phosphate Pathway: Structural Variations around Phosphonate Anchor and Spacer of Fosmidomycin, a Potent Inhibitor of Deoxyxylulose Phosphate Reductoisomerase
Fosmidomycin and its analogue FR-900098 are potent inhibitors of 1-deoxy-d-xylulose 5-phosphate reducto-isomerase (DXR), the second enzyme of the MEP pathway for the biosynthesis of isoprenoids. This paper describes the synthesis of analogues of the two reverse phosphonohydroxamic acids 3 and 4, in which the length of the carbon spacer is modified, the N-methyl group of 3 is replaced by an ethyl group
[EN] N-SUBSTITUTED INDOLE DERIVATIVES AND CONJUGATES FOR THE TREATMENT OF CANCER<br/>[FR] DÉRIVÉS D'INDOLES N-SUBSTITUÉS ET CONJUGUÉS POUR LE TRAITEMENT DU CANCER
申请人:[en]DIACCURATE
公开号:WO2024003002A1
公开(公告)日:2024-01-04
The present invention relates to N-substituted derivatives of indoles of formula (I): and their use in the treatment of cancer. The invention further provides protein-drug conjugates, more particularly antibody-drug conjugates, from compounds of formula (I).
Synthesis of Phosphonic Acids with the Semicarbazide Group for the Functionalization of Metal Oxide and Zeolite Nanoparticles
The syntheses of two phosphonic acids possessing the Fmoc-protected semicarbazide group are described. The key step was the Curtius rearrangement, performed in the presence of dibenzyl phosphonate esters. Preliminary experiments showed that the phosphonic acid can be grafted at the surface of oxide nanoparticles and colloidal zeolite nanocrystals, without deprotection of the Fmoc group.
Incorporation of an Amide into 5-Phosphonoalkyl-6-<scp>d</scp>-ribitylaminopyrimidinedione Lumazine Synthase Inhibitors Results in an Unexpected Reversal of Selectivity for Riboflavin Synthase vs Lumazine Synthase
Several analogues of a hypothetical intermediate in the reaction catalyzed by lumazine synthase were synthesized and tested as inhibitors of both Bacillus subtilis lumazine synthase and Escherichia coli riboflavin synthase. The new compounds were designed by replacement of a two-carbon fragment of several 5-phosphonoalkyl-6-D-ribitylaminopyrimidinedione lumazine synthase inhibitors with an amide linkage that was envisioned as an analogue of a Schiff base moiety of a hypothetical intermediate in the enzyme-catalyzed reaction. The incorporation of the amide group led to an unexpected reversal in selectivity for inhibition of lumazine synthase vs riboflavin synthase. Whereas the parent 5-phosphonoalkyl-6-D-ribitylaminopyrimidinediones were lumazine synthase inhibitors and did not inhibit riboflavin synthase, the amide-containing derivatives inhibited riboflavin synthase and were only very weak or inactive as lumazine synthase inhibitors. Molecular modeling of inhibitor-lumazine synthase complexes did not reveal a structural basis for these unexpected findings. However, molecular modeling of one of the inhibitors with E. coli riboflavin synthase demonstrated that the active site of the enzyme could readily accommodate two ligand molecules.