摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

N4-ethoxycytidine | 1228271-25-7

中文名称
——
中文别名
——
英文名称
N4-ethoxycytidine
英文别名
1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-4-(ethoxyamino)pyrimidin-2-one
N4-ethoxycytidine化学式
CAS
1228271-25-7
化学式
C11H17N3O6
mdl
——
分子量
287.272
InChiKey
AOSOORKAJJTUFH-PEBGCTIMSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -1.3
  • 重原子数:
    20
  • 可旋转键数:
    5
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.64
  • 拓扑面积:
    124
  • 氢给体数:
    4
  • 氢受体数:
    6

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    N4-ethoxycytidine磷酸三甲酯1,8-双二甲氨基萘三氯氧磷三正丁胺 、 bis(tri-n-butylammonium) salt of phosphoric acid 作用下, 以 N,N-二甲基甲酰胺 为溶剂, 反应 0.34h, 生成 N4-OEt-CDP
    参考文献:
    名称:
    Pyrimidine Ribonucleotides with Enhanced Selectivity as P2Y6 Receptor Agonists: Novel 4-Alkyloxyimino, (S)-Methanocarba, and 5′-Triphosphate γ-Ester Modifications
    摘要:
    The P2Y(6) receptor is a cytoprotective G-protein-coupled receptor (GPCR) activated by UDP (EC50 = 0.30 mu M). We compared and combined modifications to enhance P2Y(6) receptor agonist selectivity, including ribose ring constraint, 5-iodo and 4-alkyloxyimino modifications, and phosphate modifications such as alpha,beta-methylene and extension of the terminal phosphate group into gamma-esters of UTP analogues. The conformationally constrained (S)-methanocarba-UDP is a full agonist (EC50 = 0.042 mu M). 4-Methoxyimino modification of pyrimidine enhanced P2Y(6), preserved P2Y(2) and P2Y(4), and abolished P2Y(14) receptor potency, in the appropriate nucleotide. N-4-Benzyloxy-CDP (15, MRS2964) and N-4-methoxy-Cp3U Cp3U (12, MRS2957) were potent, selective P2Y(6) receptor agonists (EC50 of 0.026 and 0.012 mu M, respectively). A hydrophobic binding region near the nucleobase was explored with receptor modeling and docking. UTP-gamma-aryl and cycloalkyl phosphoesters displayed only intermediate P2Y(6) receptor potency but had enhanced stability in acid and cell membranes. UTP-glucose was inactive, but its (S)-methanocarba analogue and N-4-methoxycytidine 5'-triphospho-gamma-[1]glucose were active (EC50 of 2.47 and 0.18 mu M, respectively). Thus, the potency, selectivity, and stability of pyrimidine nucleotides as P2Y(6) receptor agonists may be enhanced by modest structural changes.
    DOI:
    10.1021/jm100287t
  • 作为产物:
    描述:
    乙氧基胺盐酸盐胞苷吡啶 作用下, 以97%的产率得到N4-ethoxycytidine
    参考文献:
    名称:
    Pyrimidine Ribonucleotides with Enhanced Selectivity as P2Y6 Receptor Agonists: Novel 4-Alkyloxyimino, (S)-Methanocarba, and 5′-Triphosphate γ-Ester Modifications
    摘要:
    The P2Y(6) receptor is a cytoprotective G-protein-coupled receptor (GPCR) activated by UDP (EC50 = 0.30 mu M). We compared and combined modifications to enhance P2Y(6) receptor agonist selectivity, including ribose ring constraint, 5-iodo and 4-alkyloxyimino modifications, and phosphate modifications such as alpha,beta-methylene and extension of the terminal phosphate group into gamma-esters of UTP analogues. The conformationally constrained (S)-methanocarba-UDP is a full agonist (EC50 = 0.042 mu M). 4-Methoxyimino modification of pyrimidine enhanced P2Y(6), preserved P2Y(2) and P2Y(4), and abolished P2Y(14) receptor potency, in the appropriate nucleotide. N-4-Benzyloxy-CDP (15, MRS2964) and N-4-methoxy-Cp3U Cp3U (12, MRS2957) were potent, selective P2Y(6) receptor agonists (EC50 of 0.026 and 0.012 mu M, respectively). A hydrophobic binding region near the nucleobase was explored with receptor modeling and docking. UTP-gamma-aryl and cycloalkyl phosphoesters displayed only intermediate P2Y(6) receptor potency but had enhanced stability in acid and cell membranes. UTP-glucose was inactive, but its (S)-methanocarba analogue and N-4-methoxycytidine 5'-triphospho-gamma-[1]glucose were active (EC50 of 2.47 and 0.18 mu M, respectively). Thus, the potency, selectivity, and stability of pyrimidine nucleotides as P2Y(6) receptor agonists may be enhanced by modest structural changes.
    DOI:
    10.1021/jm100287t
点击查看最新优质反应信息

文献信息

  • Pyrimidine Nucleotides with 4-Alkyloxyimino and Terminal Tetraphosphate δ-Ester Modifications as Selective Agonists of the P2Y<sub>4</sub> Receptor
    作者:Hiroshi Maruoka、M. P. Suresh Jayasekara、Matthew O. Barrett、Derek A. Franklin、Sonia de Castro、Nathaniel Kim、Stefano Costanzi、T. Kendall Harden、Kenneth A. Jacobson
    DOI:10.1021/jm101591j
    日期:2011.6.23
    P2Y(2) and P2Y(4) receptors are G protein-coupled receptors, activated by UTP and dinudeoside tetraphosphates, which are difficult to distinguish pharmacologically for lack of potent and selective ligands. We structurally varied phosphate and uracil moieties in analogues of pyrimidine nucleoside 5'-triphosphates and 5'-tetraphosphate esters. P2Y(4) receptor potency in phospholipase C stimulation in transfected 1321N1 human astrocytoma cells was enhanced in N-4-alkyloxycytidine derivatives. OH groups on a terminal delta-glucose phosphoester of uridine 5'-tetraphosphate were inverted or substituted with H or F to probe H-bonding effects. N-4-(Phenylpropoxy)-CTP 16 (MRS4062), Up(4)-[1]3'-deoxy-3'-fluoroglucose 34 (MRS2927), and N-4-(phenylethoxy)-CTP 15 exhibit >= 10-fold selectivity for human P2Y(4) over P2Y(2) and P2Y(6) receptors (EC50 values 23, 62, and 73 nM, respectively). delta-3-Chlorophenyl phosphoester 21 of Up(4) activated P2Y(2) but not P2Y(4) receptor. Selected nucleotides tested for chemical and enzymatic stability were much more stable than UTP. Agonist docking at CXCR4-based P2Y(2) and P2Y(4) receptor models indicated greater steric tolerance of N-4-phenylpropoxy group at P2Y(4). Thus, distal structural changes modulate potency, selectivity, and stability of extended uridine tetraphosphate derivatives, and we report the first P2Y(4) receptor-selective agonists.
  • Pyrimidine Ribonucleotides with Enhanced Selectivity as P2Y<sub>6</sub> Receptor Agonists: Novel 4-Alkyloxyimino, (S)-Methanocarba, and 5′-Triphosphate γ-Ester Modifications
    作者:Hiroshi Maruoka、Matthew O. Barrett、Hyojin Ko、Dilip K. Tosh、Artem Melman、Lauren E. Burianek、Ramachandran Balasubramanian、Barkin Berk、Stefano Costanzi、T. Kendall Harden、Kenneth A. Jacobson
    DOI:10.1021/jm100287t
    日期:2010.6.10
    The P2Y(6) receptor is a cytoprotective G-protein-coupled receptor (GPCR) activated by UDP (EC50 = 0.30 mu M). We compared and combined modifications to enhance P2Y(6) receptor agonist selectivity, including ribose ring constraint, 5-iodo and 4-alkyloxyimino modifications, and phosphate modifications such as alpha,beta-methylene and extension of the terminal phosphate group into gamma-esters of UTP analogues. The conformationally constrained (S)-methanocarba-UDP is a full agonist (EC50 = 0.042 mu M). 4-Methoxyimino modification of pyrimidine enhanced P2Y(6), preserved P2Y(2) and P2Y(4), and abolished P2Y(14) receptor potency, in the appropriate nucleotide. N-4-Benzyloxy-CDP (15, MRS2964) and N-4-methoxy-Cp3U Cp3U (12, MRS2957) were potent, selective P2Y(6) receptor agonists (EC50 of 0.026 and 0.012 mu M, respectively). A hydrophobic binding region near the nucleobase was explored with receptor modeling and docking. UTP-gamma-aryl and cycloalkyl phosphoesters displayed only intermediate P2Y(6) receptor potency but had enhanced stability in acid and cell membranes. UTP-glucose was inactive, but its (S)-methanocarba analogue and N-4-methoxycytidine 5'-triphospho-gamma-[1]glucose were active (EC50 of 2.47 and 0.18 mu M, respectively). Thus, the potency, selectivity, and stability of pyrimidine nucleotides as P2Y(6) receptor agonists may be enhanced by modest structural changes.
查看更多