摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(5Z,8Z,11Z,14Z)-Henicosa-5,8,11,14-tetraenoic acid (2-hydroxy-ethyl)-amide

中文名称
——
中文别名
——
英文名称
(5Z,8Z,11Z,14Z)-Henicosa-5,8,11,14-tetraenoic acid (2-hydroxy-ethyl)-amide
英文别名
N-(5Z,8Z,11Z,14Z-heneicosatetraenoyl)-ethanolamine;(5Z,8Z,11Z,14Z)-N-(2-hydroxyethyl)henicosa-5,8,11,14-tetraenamide
(5Z,8Z,11Z,14Z)-Henicosa-5,8,11,14-tetraenoic acid (2-hydroxy-ethyl)-amide化学式
CAS
——
化学式
C23H39NO2
mdl
——
分子量
361.568
InChiKey
ORVHRBKYJKEGFB-ZKWNWVNESA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    5.9
  • 重原子数:
    26
  • 可旋转键数:
    17
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.61
  • 拓扑面积:
    49.3
  • 氢给体数:
    2
  • 氢受体数:
    2

反应信息

  • 作为产物:
    描述:
    花生四烯酸吡啶lead(IV) acetate 、 lithium hydroxide 、 正丁基锂高氯酸草酰氯双氧水 、 sodium sulfate 、 N,N-二甲基甲酰胺 作用下, 以 四氢呋喃甲醇乙醚二氯甲烷 为溶剂, 反应 8.92h, 生成 (5Z,8Z,11Z,14Z)-Henicosa-5,8,11,14-tetraenoic acid (2-hydroxy-ethyl)-amide
    参考文献:
    名称:
    Potent Anandamide Analogs:  The Effect of Changing the Length and Branching of the End Pentyl Chain
    摘要:
    To examine the effect of changing the length and branching of the end pentyl chain (C5H11) of anandamide (AN), various analogs 1a-h and 2a-f were synthesized from either the known aldehyde ester 6a or from the alcohol 6b and tested for their pharmacological activity. A reproducible procedure was developed for the conversion of arachidonic acid to 6a or 6b in gram quantities (overall yield 15%). The appropriate tetraene esters 7 were prepared by carrying out a Wittig reaction, between 6a and the ylide generated from the phosphonium salt of the appropriate alkyl halide or between the ylide of 6d (prepared from 6a --> 6b --> 6c --> 6d) and the appropriate alkyl aldehydes. They were then hydrolyzed to the corresponding acids and transformed into AN analogs 1 via their acid chlorides then treated with excess ethanolamine. alpha-Alkylation of esters 7 gave compounds 8 which were hydrolyzed to the corresponding acids. These acids via their acid chlorides and subsequent treatment with excess fluoroethylamine gave the target compounds 2. In this way analogs 1e and 2a-c were synthesized from 6d while all the remaining analogs were prepared from 6a. In order to assess the optimal length of the alkyl terminus, analogs 1a-d were prepared and showed moderately high affinities (18-55 nM). However analogs 1a-c failed to produce significant pharmacological effects at doses up to 30 mg/kg. Analog 1d was found to be a weak partial agonist. The reason for the lack of activity in 1a-c is presently not clear. Like the THCs, the branching of the end pentyl chain in AN (1e-h) increased potency both in in vitro and in vivo activities; the dimethylheptyl (DMH) analog 1e was the most potent in the series. Similar alkyl substitutions were carried out in the fluoro-2-methylanandamide series (2a-f), and all of these analogs had high receptor affinities (1-14 nM), the DMH analog 2a being the most potent. With a few exceptions they showed robust pharmacological effects, and AN-like profiles, It was shown that the SAR of the end pentyl chain in AN is very similar to that of THCs. However, the magnitude of enhanced potency observed when the side chain of THC was changed from straight to branched was not observed when the end chain of AN was similarly changed.
    DOI:
    10.1021/jm970212f
点击查看最新优质反应信息

文献信息

  • Potent Anandamide Analogs:  The Effect of Changing the Length and Branching of the End Pentyl Chain
    作者:William J. Ryan、W. Kenneth Banner、Jenny L. Wiley、Billy R. Martin、Raj K. Razdan
    DOI:10.1021/jm970212f
    日期:1997.10.1
    To examine the effect of changing the length and branching of the end pentyl chain (C5H11) of anandamide (AN), various analogs 1a-h and 2a-f were synthesized from either the known aldehyde ester 6a or from the alcohol 6b and tested for their pharmacological activity. A reproducible procedure was developed for the conversion of arachidonic acid to 6a or 6b in gram quantities (overall yield 15%). The appropriate tetraene esters 7 were prepared by carrying out a Wittig reaction, between 6a and the ylide generated from the phosphonium salt of the appropriate alkyl halide or between the ylide of 6d (prepared from 6a --> 6b --> 6c --> 6d) and the appropriate alkyl aldehydes. They were then hydrolyzed to the corresponding acids and transformed into AN analogs 1 via their acid chlorides then treated with excess ethanolamine. alpha-Alkylation of esters 7 gave compounds 8 which were hydrolyzed to the corresponding acids. These acids via their acid chlorides and subsequent treatment with excess fluoroethylamine gave the target compounds 2. In this way analogs 1e and 2a-c were synthesized from 6d while all the remaining analogs were prepared from 6a. In order to assess the optimal length of the alkyl terminus, analogs 1a-d were prepared and showed moderately high affinities (18-55 nM). However analogs 1a-c failed to produce significant pharmacological effects at doses up to 30 mg/kg. Analog 1d was found to be a weak partial agonist. The reason for the lack of activity in 1a-c is presently not clear. Like the THCs, the branching of the end pentyl chain in AN (1e-h) increased potency both in in vitro and in vivo activities; the dimethylheptyl (DMH) analog 1e was the most potent in the series. Similar alkyl substitutions were carried out in the fluoro-2-methylanandamide series (2a-f), and all of these analogs had high receptor affinities (1-14 nM), the DMH analog 2a being the most potent. With a few exceptions they showed robust pharmacological effects, and AN-like profiles, It was shown that the SAR of the end pentyl chain in AN is very similar to that of THCs. However, the magnitude of enhanced potency observed when the side chain of THC was changed from straight to branched was not observed when the end chain of AN was similarly changed.
查看更多

同类化合物

(N-(2-甲基丙-2-烯-1-基)乙烷-1,2-二胺) (4-(苄氧基)-2-(哌啶-1-基)吡啶咪丁-5-基)硼酸 (11-巯基十一烷基)-,,-三甲基溴化铵 鼠立死 鹿花菌素 鲸蜡醇硫酸酯DEA盐 鲸蜡硬脂基二甲基氯化铵 鲸蜡基胺氢氟酸盐 鲸蜡基二甲胺盐酸盐 高苯丙氨醇 高箱鲀毒素 高氯酸5-(二甲氨基)-1-({(E)-[4-(二甲氨基)苯基]甲亚基}氨基)-2-甲基吡啶正离子 高氯酸2-氯-1-({(E)-[4-(二甲氨基)苯基]甲亚基}氨基)-6-甲基吡啶正离子 高氯酸2-(丙烯酰基氧基)-N,N,N-三甲基乙铵 马诺地尔 马来酸氢十八烷酯 马来酸噻吗洛尔EP杂质C 马来酸噻吗洛尔 马来酸倍他司汀 顺式环己烷-1,3-二胺盐酸盐 顺式氯化锆二乙腈 顺式吡咯烷-3,4-二醇盐酸盐 顺式双(3-甲氧基丙腈)二氯铂(II) 顺式3,4-二氟吡咯烷盐酸盐 顺式1-甲基环丙烷1,2-二腈 顺式-二氯-反式-二乙酸-氨-环己胺合铂 顺式-二抗坏血酸(外消旋-1,2-二氨基环己烷)铂(II)水合物 顺式-N,2-二甲基环己胺 顺式-4-甲氧基-环己胺盐酸盐 顺式-4-环己烯-1.2-二胺 顺式-4-氨基-2,2,2-三氟乙酸环己酯 顺式-2-甲基环己胺 顺式-2-(苯基氨基)环己醇 顺式-2-(氨基甲基)-1-苯基环丙烷羧酸盐酸盐 顺式-1,3-二氨基环戊烷 顺式-1,2-环戊烷二胺 顺式-1,2-环丁腈 顺式-1,2-双氨甲基环己烷 顺式--N,N'-二甲基-1,2-环己二胺 顺式-(R,S)-1,2-二氨基环己烷铂硫酸盐 顺式-(2-氨基-环戊基)-甲醇 顺-2-戊烯腈 顺-1,3-环己烷二胺 顺-1,3-双(氨甲基)环己烷 顺,顺-丙二腈 非那唑啉 靛酚钠盐 靛酚 霜霉威盐酸盐 霜脲氰