Synthesis and Biological Evaluation of Piperic Acid Amides as Free Radical Scavengers and α-Glucosidase Inhibitors
作者:Koichi Takao、Takaki Miyashiro、Yoshiaki Sugita
DOI:10.1248/cpb.c14-00874
日期:——
A series of piperic acid amides (4–24, 29, 30) were synthesized and their 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging and α-glucosidase inhibitory activities were evaluated. Among the synthesized compounds, the amides 11, 13 and 15, which contain o-methoxyphenol, catechol or 5-hydroxyindole moieties, showed potent DPPH free radical scavenging activity (11: EC50 140 µM; 13: EC50 28 µM; 15: EC50 20 µM). The amides 10, 18 and 23 showed higher inhibitory activity of α-glucosidase (10: IC50 21 µM; 18: IC50 21 µM; 23: IC50 12 µM). These data suggest that the hydrophobicity of the conjugated amines is an important determinant of α-glucosidase inhibitory activity. In addition, the amides 13 and 15 showed both potent DPPH free radical scavenging activity and α-glucosidase inhibitory activity (13: IC50 46 µM; 15: IC50 46 µM). This is the first report identifying the DPPH free radical scavenging and α-glucosidase inhibitory activities of piperic acid amides and suggests that these amides may serve as lead compounds for the development of novel α-glucosidase inhibitors with antioxidant activity.
合成了一系列胡椒酸酰胺(4–24, 29, 30),并评估了它们对1,1-二苯基-2-苦苷肼(DPPH)自由基的清除活性及α-葡萄糖苷酶的抑制活性。在合成的化合物中,含有邻甲氧基苯酚、儿茶酚或5-羟基吲哚基团的酰胺11、13和15表现出强效的DPPH自由基清除活性(11: EC50 140 µM; 13: EC50 28 µM; 15: EC50 20 µM)。酰胺10、18和23则展现出更高的α-葡萄糖苷酶抑制活性(10: IC50 21 µM; 18: IC50 21 µM; 23: IC50 12 µM)。这些数据显示,结合胺的疏水性是α-葡萄糖苷酶抑制活性的一个重要决定因素。此外,酰胺13和15同时表现出强效的DPPH自由基清除活性和α-葡萄糖苷酶抑制活性(13: IC50 46 µM; 15: IC50 46 µM)。这是首次报告胡椒酸酰胺的DPPH自由基清除活性和α-葡萄糖苷酶抑制活性,并暗示这些酰胺可能作为开发具有抗氧化活性的新型α-葡萄糖苷酶抑制剂的先导化合物。