An integrated process of CO<sub>2</sub>capture and in situ hydrogenation to formate using a tunable ethoxyl-functionalized amidine and Rh/bisphosphine system
作者:Yu-Nong Li、Liang-Nian He、Xian-Dong Lang、Xiao-Fang Liu、Shuai Zhang
DOI:10.1039/c4ra08740b
日期:——
An integrated process of CO2 capture and in situ hydrogenation into formate was achieved in 95–99% yield using a tunable ethoxyl-functionalized amidine and Rh/bisphosphine system, being regarded as an alternative carbon capture and utilization approach to supply fuel-related products, to circumvent the energy penalty in carbon capture and storage. CO2 was captured by non-volatile amidine derivatives with simultaneous activation to form zwitterionic amidinium carbonate, and subsequent hydrogenation was facilitated by Rh/bisphosphine. The adsorption capacity and hydrogenation efficiency can be optimized by tuning the ethoxyl side chain. Particularly, the alkanolamidine bearing an intramolecular hydrogen donor derived from 1,8-diazabicyclo[5.4.0]-undec-7-ene (DBU) gave both a high CO2 uptake (molar ratio of 0.95 : 1) and excellent hydrogenation yield (99%). Furthermore, the silica-supported alkanolamidine was readily recovered and reused with the retention of good performance. This kind of carbon capture and utilization pathway could be a potential energy-saving option for industrial upgrading of CO2 from waste to fuel-related products in a carbon neutral manner.
实现了CO2捕集与原位氢化为甲酸的综合过程,产率达到95%-99%,使用了可调的乙氧基功能化胺基及Rh/双磷酸酯体系,这被视为供应燃料相关产品的替代碳捕集与利用方法,以避免碳捕集与储存中的能量损失。CO2通过非挥发性胺基衍生物被捕集,同时活化形成带有双重电荷的胺基碳酸盐,随后氢化过程由Rh/双磷酸酯促进。通过调节乙氧基侧链,可以优化吸附能力和氢化效率。特别是,具有来源于1,8-二氮双环[5.4.0]-十一烯(DBU)内源氢供体的烷醇胺基显示出高CO2吸附量(摩尔比为0.95:1)和优异的氢化产率(99%)。此外,硅胶支持的烷醇胺基可以方便地回收再利用,并保持良好性能。这种碳捕集与利用路径可能成为将废弃CO2工业转化为燃料相关产品的潜在节能选择,以实现碳中和。