sn-Glycerol-3-phosphate dehydrogenase (GlpD) from Escherichia coli is a peripheral membrane enzyme involved in respiratory electron transfer. For it to display its enzymic activity, binding to the inner membrane is required. The way the enzyme interacts with the membrane and how this controls activity has not been elucidated. In the present study we provide evidence for direct protein—lipid interaction. Using the monolayer technique, we observed insertion of GlpD into lipid monolayers with a clear preference for anionic phospholipids. GlpD variants with point mutations in their predicted amphipathic helices showed a decreased ability to penetrate anionic phospholipid monolayers. From these data we propose that membrane binding of GlpD occurs by insertion of an amphipathic helix into the acyl-chain region of lipids mediated by negatively charged phospholipids.
Glycerophosphocholine (GPC) is an abundant osmoprotective renal medullary organic osmolyte. We previously found that its synthesis from phosphatidylcholine is catalyzed by tonicity-regulated activity of the phospholipase B, neuropathy target esterase. We also found that its degradation is catalyzed by glycerophosphocholine phosphodiesterase (GPC-PDE) activity and that elevating osmolality from 300 to 500 mosmol/kg by adding NaCl or urea, inhibits GPC-PDE activity, which contributes to the resultant increase of GPC. In the present studies we identify GDPD5 (glycerophosphodiester phosphodiesterase domain containing 5) as a GPC-PDE that is rapidly inhibited by high NaCl or urea. Recombinant GDPD5 colocalizes with neuropathy target esterase in the perinuclear region of HEK293 cells, and immuno-precipitated recombinant GDPD5 degrades GPC
ADPRibase-Mn (Mn2+-dependent ADP-ribose/CDP-alcohol pyrophosphatase) was earlier isolated from rat liver supernatants after separation from ADPRibase-I and ADPRibase-II (Mg2+-activated ADP-ribose pyrophosphatases devoid of CDP-alcohol pyrophosphatase activity). The last mentioned are putative Nudix hydrolases, whereas the molecular identity of ADPRibase-Mn is unknown. MALDI (matrix-assisted laser-desorption ionization) MS data from rat ADPRibase-Mn pointed to a hypothetical protein that was cloned and expressed and showed the expected specificity. It is encoded by the RGD1309906 rat gene, which so far has been annotated simply as ‘hydrolase’. ADPRibase-Mn is not a Nudix hydrolase, but it shows the sequence and structural features typical of the metallophosphoesterase superfamily. It may constitute a protein family of its own, the members of which appear to be specific to vertebrates, plants and algae. ADP-ribose was successfully docked to a model of rat ADPRibase-Mn, revealing its putative active centre. Microarray data from the GEO (Gene Expression Omnibus) database indicated that the mouse gene 2310004I24Rik, an orthologue of RGD1309906, is preferentially expressed in immune cells. This was confirmed by Northern-blot and activity assay of ADPRibase-Mn in rat tissues. A possible role of ADPRibase-Mn in immune cell signalling is suggested by the second-messenger role of ADP-ribose, which activates TRPM2 (transient receptor potential melastatin channel-2) ion channels as a mediator of oxidative/nitrosative stress, and by the signalling function assigned to many of the microarray profile neighbours of 2310004I24Rik. Furthermore, the influence of ADPRibase-Mn on the CDP-choline or CDP-ethanolamine pathways of phospholipid biosynthesis cannot be discounted.
Previously we identified MIR16 (membrane interacting protein of RGS16) as an integral membrane glycoprotein that interacts with regulator of G protein signaling proteins and shares significant sequence homology with bacterial glycerophosphodiester phosphodiesterases (GDEs), suggesting that it is a putative mammalian GDE. Here we show that MIR16 belongs to a large, evolutionarily conserved family of GDEs with a characteristic putative catalytic domain that shares a common motif (amino acids 92–116) with the catalytic domains of mammalian phosphoinositide phospholipases C. Expression of wild-type MIR16 (renamed GDE1), but not two catalytic domain mutants (E97A/D99A and H112A), leads to a dramatic increase in glycerophosphoinositol phosphodiesterase (GPI-PDE) activity in HEK 293T cells. Analysis of substrate specificity shows that GDE1/MIR16 selectively hydrolyzes GPI over glycerophosphocholine. The GPI-PDE activity of GDE1/MIR16 expressed in HEK 293T cells can be regulated by stimulation of G protein-coupled, α/β-adrenergic, and lysophospholipid receptors. Membrane topology studies suggest a model in which the catalytic GDE domain faces the lumen/extracellular space and the C terminus faces the cytoplasm. Our results suggest that by serving as a PDE for GPI with its activity regulated by G protein signaling, GDE1/MIR16 provides a link between phosphoinositide metabolism and G protein signal transduction.