摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

对氯苯基硅烷 | 3724-36-5

中文名称
对氯苯基硅烷
中文别名
——
英文名称
(4-chlorophenyl)silane
英文别名
p-Chlorphenylsilan;4-Chlor-phenylsilan;<4-Chlor-phenyl>-silan;Silane, (4-chlorophenyl)-
对氯苯基硅烷化学式
CAS
3724-36-5
化学式
C6H7ClSi
mdl
——
分子量
142.66
InChiKey
BMIUSFVDMBMIAD-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0.33
  • 重原子数:
    8
  • 可旋转键数:
    0
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    0

安全信息

  • 海关编码:
    2931900090

SDS

SDS:4dcf90bbfd59b23ee58153ae61268dcc
查看

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    对氯苯基硅烷 在 C30H54CaN4Si 作用下, 以 氘代苯 为溶剂, 反应 2.0h, 以84%的产率得到三(4-氯苯基)硅烷
    参考文献:
    名称:
    有机钙络合物催化的 ArSiH 3或 Ar(烷基)SiH 2选择性再分布到 Ar 3 SiH 或 Ar 2 (烷基)SiH
    摘要:
    钙是一种丰富的、生物相容的、环境友好的元素。有机钙配合物在有机合成中用作催化剂最近取得了一些突破,但报道的反应类型仍然有限。另一方面,氢硅烷是有机和聚合物合成中非常重要的试剂,通过 C-Si 和 Si-H 键断裂和重整对氢硅烷的重新分布提供了使此类化合物的范围多样化的直接策略。在此,我们报告了由基于 β-二酮亚胺基的四齿配体支持的两种烷基钙配合物的合成和结构表征。这两种烷基钙配合物与 PhSiH 3反应生成氢化钙配合物,氢化配合物的稳定性取决于支持配体。一种钙烷基复杂有效地催化ArSiH的选择性再分配3或Ar(烷基)的SiH 2与Ar 3的SiH和SiH 4或Ar 2(烷基)的SiH和alkylSiH 3分别。更重要的是,这种烷基钙配合物还催化了吸电子取代的Ar(R)SiH 2和供电子取代的Ar'(R)SiH 2之间的交叉偶联,以良好的产率生产ArAr'(烷基)SiH。合成的ArAr'(烷基)SiH
    DOI:
    10.1021/acscatal.1c00463
  • 作为产物:
    描述:
    (4-chlorophenyl)di(cyclohexa-2,5-dien-1-yl)silane 在 三(五氟苯基)硼烷 作用下, 以 二氯甲烷-D2 为溶剂, 反应 19.0h, 生成 对氯苯基硅烷
    参考文献:
    名称:
    基于甲硅烷的定制氢硅烷合成
    摘要:
    在合成化学中,具有碳取代基的硅化合物无处不在,这掩盖了一个事实,即除了硅原子上的某些取代方式外,它们的制备往往并非易事。挑战根源在于缺乏对在具有三个或四个离去基团的硅原子上用碳亲核试剂进行亲核取代的控制。例如,SiCl 4通常转化为难处理的氯硅烷混合物,通常需要几个蒸馏循环才能达到高纯度。因此,没有通用的方法来取代具有杂多取代基的硅烷。在这里,使用稳定的SiH 4作为替代,我们介绍了按需合成装饰有不同芳基和烷基取代基的硅化合物的一般策略。可靠的方案是二氢硅烷和一氢硅烷选择性和可编程合成的基础;芳基取代的三氢硅烷也可以以直接的方式获得。这些原本难以接近的氢硅烷距离SiH 4替代品只有3个或更少的易于合成操作。
    DOI:
    10.1016/j.chempr.2018.03.017
点击查看最新优质反应信息

文献信息

  • Iron-Catalyzed Highly Enantioselective Hydrosilylation of Unactivated Terminal Alkenes
    作者:Biao Cheng、Wenbo Liu、Zhan Lu
    DOI:10.1021/jacs.8b01638
    日期:2018.4.18
    The iron-catalyzed highly Markovnikov-type selective and enantioselective hydrosilylation of terminal aliphatic alkenes with good functional group tolerance is developed. This operationally simple protocol uses earth-abundant transition metal catalyst, readily available aliphatic alkenes and hydrosilanes to construct valuable chiral organosilanes with better than 99% ee in most cases. The chiral aliphatic
    开发了铁催化的具有良好官能团耐受性的末端脂肪族烯烃的高度马尔可夫尼科夫型选择性和对映选择性氢化硅烷化。这种操作简单的方案使用地球上丰富的过渡金属催化剂、容易获得的脂肪族烯烃和氢硅烷来构建有价值的手性有机硅烷,在大多数情况下,ee 优于 99%。手性脂肪族链烷-2-醇和手性二羟基硅烷作为酮的类似物可以通过手性有机硅烷的进一步衍生化而有效合成,无需任何外消旋化。
  • CARBON–SILICON BOND CLEAVAGE OF ORGANOTRIALKOXYSILANES AND ORGANOSILATRANES WITH<i>m</i>-CHLOROPERBENZOIC ACID AND<i>N</i>-BROMOSUCCINIMIDE. NEW ROUTE TO PHENOLS, PRIMARY ALCOHOLS AND BROMIDES
    作者:Akira Hosomi、Susumu Iijima、Hideki Sakurai
    DOI:10.1246/cl.1981.243
    日期:1981.2.5
    Alkyl- and aryltriethoxysilanes undergo oxidative carbon–silicon bond cleavage smoothly with m-chloroperbenzoic acid (MCPBA) to afford the corresponding alcohols. Silatranes similarly gave alcohols and bromides with MCPBA and N-bromosuccinimide, respectively.
    烷基和芳基三乙氧基硅烷能够顺利地通过间氯过氧苯甲酸(m-氯过氧苯甲酸)进行氧化碳硅键断裂,得到相应的醇。类似地,硅拉烷分别与m-氯过氧苯甲酸和N-溴代丁二酰亚胺反应,分别得到醇和溴化物。
  • Iron-Catalyzed Regiodivergent Alkyne Hydrosilylation
    作者:Meng-Yang Hu、Peng He、Tian-Zhang Qiao、Wei Sun、Wen-Tao Li、Jie Lian、Jin-Hong Li、Shou-Fei Zhu
    DOI:10.1021/jacs.0c09083
    日期:2020.9.30
    bearing 2,9-diaryl-1,10-phenanthroline ligands exhibit not only unprecedented catalytic activity but also unusual ligand-controlled divergent regioselectivity in hydrosilylation reactions of various alkynes. The hydrosilylation protocol described herein provides a highly efficient method for preparing useful di- and trisubstituted olefins on a relatively large scale under mild conditions, and its use
    尽管人们对铁催化方法的开发付出了巨大的努力,但迄今为止报道的催化剂很少表现出明显优于其他金属催化剂的优势,而且大多数铁催化的机理仍不清楚。在此,我们报告了带有 2,9-二芳基-1,10-菲咯啉配体的铁配合物不仅表现出前所未有的催化活性,而且在各种炔烃的氢化硅烷化反应中还表现出不寻常的配体控制的发散区域选择性。本文所述的氢化硅烷化方案提供了一种在温和条件下以相对大规模制备有用的二取代和三取代烯烃的高效方法,其使用显着提高了许多生物活性化合物的合成效率。
  • Rare-Earth-Catalyzed Selective 1,4-Hydrosilylation of Branched 1,3-Enynes Giving Tetrasubstituted Silylallenes
    作者:Wufeng Chen、Chunhui Jiang、Jianying Zhang、Jiaqi Xu、Lin Xu、Xiufang Xu、Jianfeng Li、Chunming Cui
    DOI:10.1021/jacs.1c04689
    日期:2021.8.25
    reactivities. Catalytic 1,4-hydrosilylation of 1,3-enynes may present the straightforward strategy for synthesis of silylallenes. However, the transition-metal-catalyzed reaction has not been successful due to poor selectivity and very limited substrate scopes. We report here the efficient and selective 1,4-hydrosilylation of branched 1,3-enynes enabled by the ene-diamido rare-earth ate catalysts using both alkyl
    艾伦烯是有机合成和药物化学中的多功能合成子,因为它们具有多种反应性。1,3-烯炔的催化 1,4-氢化硅烷化可能是合成甲硅烷基丙二烯的直接策略。然而,由于选择性差和底物范围非常有限,过渡金属催化的反应并未成功。我们在此报告了支链 1,3-烯炔的高效和选择性 1,4-氢化硅烷化,由烯-二氨基稀土催化剂使用烷基和芳基氢硅烷实现,导致独家形成四取代的甲硅烷基丙二烯。进行了氘化反应、动力学研究和 DFT 计算以研究可能的机制,揭示了高路易斯酸度、大离子半径和稀土催化剂的结构的关键作用。
  • Highly selective redistribution of primary arylsilanes to secondary arylsilanes catalyzed by Ln(CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>NMe<sub>2</sub>-<i>o</i>)<sub>3</sub>@SBA-15
    作者:Chenjun Guo、Min Li、Jue Chen、Yunjie Luo
    DOI:10.1039/c9cc07493g
    日期:——
    Rare-earth metal tris(aminobenzyl) complexes Ln(CH2C6H4NMe2-o)3 (Ln = La, Y) were grafted onto the dehydroxylated periodic mesoporous silica support SBA-15 to generate the organometallic–inorganic hybrid materials Ln(CH2C6H4NMe2-o)3@SBA-15 (Ln = La (2a), Y (2b)), which demonstrated extremely high selectivity (>99%) in catalyzing the redistribution of primary arylsilanes to secondary arylsilanes without
    将稀土金属三(氨基苄基)配合物Ln(CH 2 C 6 H 4 NMe 2 - o)3(Ln = La,Y)接枝到脱羟基的周期性介孔二氧化硅载体SBA-15上,以生成有机金属-无机杂化材料Ln(CH 2 C 6 H 4 NMe 2 - o)3 @ SBA-15(Ln = La(2a),Y(2b)))在催化伯芳基硅烷向仲芳基硅烷的再分布方面表现出极高的选择性(> 99%),而无需严格控制反应条件。在三个催化循环后,杂化材料仍显示出完美的选择性和活性。
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐