摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

N-(4-chlorophenyl)-2-hydroxy-2-phenylacetamide | 10295-53-1

中文名称
——
中文别名
——
英文名称
N-(4-chlorophenyl)-2-hydroxy-2-phenylacetamide
英文别名
——
N-(4-chlorophenyl)-2-hydroxy-2-phenylacetamide化学式
CAS
10295-53-1
化学式
C14H12ClNO2
mdl
——
分子量
261.708
InChiKey
YSUSYMXWAYSREL-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    161-164 °C(Solvent: Ethyl acetate)
  • 沸点:
    490.6±45.0 °C(Predicted)
  • 密度:
    1.352±0.06 g/cm3(Temp: 20 °C; Press: 760 Torr)(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    2.8
  • 重原子数:
    18
  • 可旋转键数:
    3
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.07
  • 拓扑面积:
    49.3
  • 氢给体数:
    2
  • 氢受体数:
    2

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    N-(4-chlorophenyl)-2-hydroxy-2-phenylacetamide甲酸三乙胺 作用下, 以 异丙醇 为溶剂, 反应 5.0h, 以228 mg的产率得到2-((4-chlorophenyl)amino)-1-phenylethan-1-ol
    参考文献:
    名称:
    Ru–g-C3N4作为高活性非均相催化剂,可将α-酮酰胺加氢转化为β-氨基或α-羟基酰胺
    摘要:
    这项工作报告了一种通过有效的非均相催化剂将α-酮酰胺催化转移加氢(CTH)转化为β-氨基的可持续路线,其中钌掺入了氮化碳载体(Ru–gC 3 N 4)。还使用相同的载体筛选了其他不同的金属(如Ni或Pd),但没有一个显示出有效的活性。尽管基于使用所有上述催化剂的反应参数的优化,也已经观察到酮部分氢化为醇。使用场发射枪扫描电子显微镜(FEG-SEM),X射线衍射(XRD),X射线光电子能谱(XPS),红外(IR)光谱和热重分析(TGA)对催化剂进行了表征。此外,该催化剂已经再循环并进一步表征,并且对于CTH方法的反应性没有任何明显的变化。Ru–gC 3 N 4由于可循环利用的多相催化剂首次用于将α-酮基酰胺的CTH转化为β-氨基,因此该方法具有可持续性,因为使用了经济环保的异丙醇作为溶剂体系。所提出的催化体系显示出广泛的α-羟基酰胺和β-氨基衍生物底物,这些底物已通过1 H和13 C-NMR证实。
    DOI:
    10.1039/d0nj01674h
  • 作为产物:
    描述:
    苯乙酮 在 selenium(IV) oxide 、 异丙醇 作用下, 以 乙腈 为溶剂, 反应 3.0h, 生成 N-(4-chlorophenyl)-2-hydroxy-2-phenylacetamide
    参考文献:
    名称:
    Ru–g-C3N4作为高活性非均相催化剂,可将α-酮酰胺加氢转化为β-氨基或α-羟基酰胺
    摘要:
    这项工作报告了一种通过有效的非均相催化剂将α-酮酰胺催化转移加氢(CTH)转化为β-氨基的可持续路线,其中钌掺入了氮化碳载体(Ru–gC 3 N 4)。还使用相同的载体筛选了其他不同的金属(如Ni或Pd),但没有一个显示出有效的活性。尽管基于使用所有上述催化剂的反应参数的优化,也已经观察到酮部分氢化为醇。使用场发射枪扫描电子显微镜(FEG-SEM),X射线衍射(XRD),X射线光电子能谱(XPS),红外(IR)光谱和热重分析(TGA)对催化剂进行了表征。此外,该催化剂已经再循环并进一步表征,并且对于CTH方法的反应性没有任何明显的变化。Ru–gC 3 N 4由于可循环利用的多相催化剂首次用于将α-酮基酰胺的CTH转化为β-氨基,因此该方法具有可持续性,因为使用了经济环保的异丙醇作为溶剂体系。所提出的催化体系显示出广泛的α-羟基酰胺和β-氨基衍生物底物,这些底物已通过1 H和13 C-NMR证实。
    DOI:
    10.1039/d0nj01674h
点击查看最新优质反应信息

文献信息

  • Novel chiral stationary phases based on 3,5‐dimethyl phenylcarbamoylated β‐cyclodextrin combining cinchona alkaloid moiety
    作者:Lunan Zhu、Junchen Zhu、Xiaotong Sun、Yaling Wu、Huiying Wang、Lingping Cheng、Jiawei Shen、Yanxiong Ke
    DOI:10.1002/chir.23237
    日期:2020.8
    Novel chiral selectors based on 3,5dimethyl phenylcarbamoylated βcyclodextrin connecting quinine (QN) or quinidine (QD) moiety were synthesized and immobilized on silica gel. Their chromatographic performances were investigated by comparing to the 3,5dimethyl phenylcarbamoylated βcyclodextrin (β‐CD) chiral stationary phase (CSP) and 9‐O‐(tert‐butylcarbamoyl)‐QN‐based CSP (QN‐AX). Fmoc‐protected
    合成了基于3,5-二甲基苯基氨基甲酰基化的β-环糊精连接奎宁(QN)或奎尼丁(QD)部分的新型手性选择剂,并将其固定在硅胶上。通过与3,5-二甲基苯基氨基甲酰基化的β-环糊精(β-CD)手性固定相(CSP)和9- O-(叔)进行比较,研究了它们的色谱性能。-丁基氨基甲酰基)-基于QN的CSP(QN-AX)。在CSP上评估了Fmoc保护的氨基酸,手性药物Cloprostenol(已成功用于兽医学)和中性手性分析物,结果表明,这种新型CSP既具有CD基CSP的对映体分离能力,又具有QN /与基于β-CD的CSP或基于QN / QD的CSP相比,基于QD的CSP具有更广泛的应用范围。发现QN / QD部分在Fmoc-氨基酸的整个对映体分离过程中起主导作用,并伴随有β-CD部分的协同作用,从而导致基于β-CD-QN的CSP和β的不同对映体分离基于CD-QD的CSP。此外,
  • Potassium Phosphate-Catalyzed Chemoselective Reduction of α-Keto Amides: Route to Synthesize Passerini Adducts and 3-Phenyloxindoles
    作者:Alagesan Muthukumar、N. Chary Mamillapalli、Govindasamy Sekar
    DOI:10.1002/adsc.201500815
    日期:2016.2.18
    A chemoselective reduction of α‐keto amides to biologically important α‐hydroxy amides (mandelamides) by polymethylhydrosiloxane (PMHS) using 5 mol% potassium phosphate (K3PO4) as catalyst has been developed. This transition metal‐free protocol discloses excellent chemoselectivity for the ketone reduction of α‐keto amides in the presence of other reducible functionalities like ketone, nitro, halides
    已开发出使用5 mol%磷酸钾(K 3 PO 4)作为催化剂,通过聚甲基氢硅氧烷(PMHS)将α-酮酰胺化学选择性还原为生物学上重要的α-羟基酰胺(扁桃酰胺)的方法。该无过渡金属方案公开了在存在其他可还原官能团(例如酮,硝基,卤化物,腈和酰胺)的情况下,α-酮酰胺的酮还原反应具有出色的化学选择性。此外,化学选择性还原的α-羟基酰胺已被衍生为无异氰酸酯的Passerini加合物。所述Ñ烷基-α羟基酰胺已经通过用甲磺酰cholride和三乙胺处理被成功地转化为3- phenyloxindole衍生物。
  • Catalyst- and Additive-Free Chemoselective Transfer Hydrogenation of α-Keto Amides to α-Hydroxy Amides by Sodium Formate
    作者:Feiyue Hao、Zhenyu Gu、Guyue Liu、Wubing Yao、Huajiang Jiang、Jiashou Wu
    DOI:10.1002/ejoc.201901073
    日期:2019.9.15
    A catalyst‐ and additive‐free chemoselective transfer hydrogenation of α‐keto amides to α‐hydroxy amides is easily achieved by using sodium formate as a hydrogen source. Control experiments suggest that the NH group of α‐keto amides is crucial for the chemoselective reduction through the formation of hydrogen bonds.
    通过使用甲酸钠作为氢源,可以轻松实现无催化剂和无添加剂的α-酮酰胺的化学选择性转移氢化为α-羟基酰胺。对照实验表明,α-酮酰胺的NH基对于通过形成氢键进行化学选择性还原至关重要。
  • A Mild and Chemoselective Hydrosilylation of α-Keto Amides by Using a Cs<sub>2</sub> CO<sub>3</sub> /PMHS/2-MeTHF System
    作者:Govindharaj Kumar、Alagesan Muthukumar、Govindasamy Sekar
    DOI:10.1002/ejoc.201700374
    日期:2017.9.8
    A Cs2CO3-catalyzed hydrosilylation reaction of α-keto amides that proceeds through the in situ formation of MeSiH3 has been developed by using inexpensive polymethylhydrosiloxane in 2-methyltetrahydrofuran (2-MeTHF) as the solvent. A wide range of aryl and alkyl α-keto amides, prepared from anilines and alkylamines, were subjected to the hydrosilylation conditions to afford α-hydroxy amides in moderate
    通过在2-甲基四氢呋喃(2-MeTHF)中使用廉价的聚甲基氢硅氧烷,开发了通过MeSiH 3原位形成的α-酮酰胺的Cs 2 CO 3催化的氢化硅烷化反应。将由苯胺和烷基胺制得的各种芳基和烷基α-酮酰胺置于氢化硅烷化条件下,以中等至极好的收率得到α-羟基酰胺。将该无过渡金属的方案应用于化学选择性氢化硅烷化反应,其中与简单酮相比,α-酮酰胺官能团的羰基发生还原,并进一步扩展至克级规程。
  • Chemoselective reduction of α-keto amides using nickel catalysts
    作者:N. Chary Mamillapalli、Govidasamy Sekar
    DOI:10.1039/c4cc02744b
    日期:——

    Ni-catalysts are used for the first time to synthesize α-hydroxy amides and β-amino alcohols from α-keto amides by chemoselective and complete reduction using hydrosilanes.

    Ni催化剂首次被用于通过选择性和完全还原使用硅氢化合物从α-酮酰胺合成α-羟基酰胺和β-氨基醇。
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐