摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

Co(O(C6H4)(CHN(CH2)3Si(OEt)3))2 | 1007129-71-6

中文名称
——
中文别名
——
英文名称
Co(O(C6H4)(CHN(CH2)3Si(OEt)3))2
英文别名
——
Co(O(C6H4)(CHN(CH2)3Si(OEt)3))2化学式
CAS
1007129-71-6
化学式
C32H52CoN2O8Si2
mdl
——
分子量
707.938
InChiKey
IMXZKHKKVCBQGY-VSPCVOEHSA-L
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    None
  • 重原子数:
    None
  • 可旋转键数:
    None
  • 环数:
    None
  • sp3杂化的碳原子比例:
    None
  • 拓扑面积:
    None
  • 氢给体数:
    None
  • 氢受体数:
    None

反应信息

  • 作为产物:
    描述:
    参考文献:
    名称:
    负载在超顺磁性Fe 3 O 4 @SiO 2纳米颗粒上的金属离子席夫碱配合物:一种无溶剂条件下由醛合成1,1-二乙酸酯的有效,选择性和可回收催化剂
    摘要:
    我们报告了一种新的多步法制备具有高饱和磁化强度的功能化超顺磁性Fe 3 O 4 @SiO 2。在第一步中,以纳米Fe 3 O 4为核,TEOS为二氧化硅源,PVA为表面活性剂,合成了Fe 3 O 4 @SiO 2纳米球核-壳。然后,由席夫碱与金属乙酸盐[Co(OAc)2,Mn(OAc)2,Ni(OAc)2,Cu(OAc)2,Hg(OAc)2,Cr (OAc)3和Cd(OAc)2在Fe 3 O 4 @SiO 2表面上。通过透射电子显微镜(TEM)和振动样品磁强计(VSM)仪器鉴定功能化磁性二氧化硅的结构和磁性。此外,功能化的Fe 3 O 4 @SiO 2具有超顺磁特性,饱和磁化强度约为34 emu / g。NMR,FT-IR,元素分析和XRD也用于鉴定这些结构。Fe 3 O 4 @SiO 2的催化能力发现金属离子的/席夫碱络合物是在室温下在温和且无溶剂的条件下将醛转化为其相应的1,1-二乙酸
    DOI:
    10.1016/j.apcata.2012.09.010
点击查看最新优质反应信息

文献信息

  • Silica immobilized salicylaldimine Cu(II) and Co(II) complexes as catalysts in cyclohexene oxidation: A comparative study of support effects
    作者:Nandi Malumbazo、Selwyn F. Mapolie
    DOI:10.1016/j.molcata.2009.07.006
    日期:2009.10
    Unsubstituted and tertiary-butyl substituted salicylaldimine complexes of Cu(II) and Co(II) immobilized on silica supports (MCM-41, SBA-15 and Davisil 710) were tested as catalysts for cyclohexene oxidation using hydrogen peroxide as an oxidant under an oxygen atmosphere. The effect of the nature of the salicylaldimine ligand and the type of support were investigated. Allylic species were isolated
    测试了固定在二氧化硅载体(MCM-41,SBA-15和Davisil 710)上的Cu(II)和Co(II)的未取代和叔丁基取代的水杨醛亚胺络合物作为环己烯氧化的催化剂,使用过氧化氢作为氧化剂在氧气下气氛。研究了水杨醛亚胺配体的性质和载体类型的影响。仅在某些情况下,烯丙酸种类是主要产物,而环己烯-环氧化物是副产物。发现产物的选择性受载体材料的性质的很大影响。
  • Template Synthesis of Sn(II), Sn(IV) and Co(II) complexes via 3-Aminopropyltriethoxysilane and Salicylaldehyde and Evaluate their Antibacterial Sensitivity
    作者:Hayder Hamied Mihsen、Suhad Kreem Abass、Ali Kreem Abass、Khalid A. Hussain、Zainab Fadhil Abbas
    DOI:10.14233/ajchem.2018.21439
    日期:——
    atoms for metal ion complexation and for mimicking biological systems. They can be functionalized by the insertion of appropriate groups in the aliphatic or aromatic chains [7]. Template method has been used to prepare compounds that have remarkable topologies, such as helicates, rotaxanes and catenanes [8]. Schiff base complexes of Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) have been prepared
    在模板方法中,属离子可以在将反应导向所需的配体产物或帮助其分离方面发挥重要作用。模板法的例子是乙二胺2,5-二羟基苯乙酮乙酸双氧溶液存在下的反应 [1-6]。当胺或醛发生变化时,可以获得各种席夫碱。因此,可以轻松合成大量具有不同结构特征的希夫碱。它们可以有额外的供体原子,如、氧、等,这使它们成为属离子络合和模拟生物系统的良好供体原子。它们可以通过在脂肪族或芳香族链中插入适当的基团来官能化 [7]。模板法已被用于制备具有显着拓扑结构的化合物,如螺旋、轮烷和链烷 [8]。Mn(II)、Fe(III)、Co(II)、Ni(II)、Cu(II) 和 Zn(II) 的席夫碱配合物已通过模板法使用 L-组氨酸喹喔啉-2-羧基醛和属离子[9]。以及用于制备配合物的模板法通过 3-基丙基三乙氧基硅烷水杨醛合成 Sn(II)、Sn(IV) 和 Co(II) 配合物并评估它们的抗菌敏感性
  • Solvent-free oxidation of cyclohexane over covalently anchored transition-metal salicylaldimine complexes to α-zirconium phosphate using tert-butylhydroperoxide
    作者:Savita Khare、Priti Shrivastava
    DOI:10.1016/j.molcata.2015.10.010
    日期:2016.1
    Heterogeneous catalysts were prepared by covalent bonding of transition-metal salicylaldimine complex to alpha-zirconium phosphate, abbreviated as alpha-ZrP.M(salicylaldimine) where M = Co, Mn and Cu}. The resulting compounds were characterized by BET surface area, TGA analysis, X-ray diffraction, Scanning electron micrograph, energy dispersive X-ray analysis, Fourier transform infrared and Atomic absorption spectroscopy. The catalytic activity of alpha-ZrP.M(salicylaldimine) was studied for the liquid phase oxidation of cyclohexane using terr-butylhydroperoxide as an oxidant under solvent free condition. In the oxidation reaction, cyclohexane was oxidized to cyclohexanol, cyclohexanone and some unidentified products. It was found that the reactivity of alpha-ZrP.M(salicylaldimine) catalyst for the oxidation reaction decreased in the order alpha-ZrP.Co(salicylaldimine) > alpha-ZrP.Mn(salicylaldimine) > alpha-ZrP.Cu(salicylaldimine). A maximum conversion of cyclohexane (14.18%) and selectivity of cyclohexanol (4.99%), cyclohexanone (87.34%) and some other products (7.67%) was observed for catalyst, alpha-ZrP.Co(salicylaldimine) after 6 h at 353 K. The catalyst, alpha-ZrP.Co(salicylaldimine) was reused for four cycles without significant loss of catalytic activity. (C) 2015 Elsevier B.V. All rights reserved.
  • Liquid Phase Solvent-Less Cyclohexane Oxidation Catalyzed by Covalently Anchored Transition-Metal Schiff Base Complex on α-Titanium Phosphate
    作者:Savita Khare、Priti Shrivastava
    DOI:10.1007/s10562-015-1647-8
    日期:2016.2
    Covalently anchored transition-metal salicylaldimine complexes on alpha-titanium phosphate alpha-TiP.M(salicylaldimine) where M = Co, Cr, Cu and Fe} were synthesized by in situ method and characterized by BET surface area, XRD, SEM, EDX, FTIR, TGA and ICP techniques. Its catalytic activity was tested for the oxidation of cyclohexane under solvent free condition using tert-butyl hydroperoxide as an oxidant. The oxidation of cyclohexane gave cyclohexanol, cyclohexanone and some unidentified products. The activity of heterogeneous catalysts in the oxidation reaction decreased in the order of alpha-TiP.Co(salicylaldimine) > alpha-TiP.Cr(salicylaldimine) > alpha-TiP.Cu(salicylaldimine) > alpha-TiP.Fe(salicylaldimine). The alpha-TiP.Co(salicylaldimine) gave maximum conversion 14.85 % of cyclohexane with 92.13 % selectivity of KA-oil (cyclohexanol + cyclohexanone) in 6 h. The catalyst, alpha-TiP.Co(salicylaldimine) was reused for five cycles without significant loss of catalytic activity.A heterogeneous catalytic system, alpha-TiP.Co(salicylaldimine)/TBHP gave maximum 14.85 % conversion and 92.13 % selectivity for KA-oil in oxidation of cyclohexane. The catalyst can be reused for five cycles.[GRAPHICS]
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S,S)-邻甲苯基-DIPAMP (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(-)-4,12-双(二苯基膦基)[2.2]对环芳烷(1,5环辛二烯)铑(I)四氟硼酸盐 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(4-叔丁基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(3-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-4,7-双(3,5-二-叔丁基苯基)膦基-7“-[(吡啶-2-基甲基)氨基]-2,2”,3,3'-四氢1,1'-螺二茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (R)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4S,4''S)-2,2''-亚环戊基双[4,5-二氢-4-(苯甲基)恶唑] (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (3aR,6aS)-5-氧代六氢环戊基[c]吡咯-2(1H)-羧酸酯 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[((1S,2S)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1S,2S,3R,5R)-2-(苄氧基)甲基-6-氧杂双环[3.1.0]己-3-醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (1-(2,6-二氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙蒿油 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫-d6 龙胆紫