Male and female rats were treated with (14)C-bifenthrin labeled in the acid or alcohol moiety at single oral doses of 4 and 35 mg/kg. (14)C was rapidly excreted into feces and urine, and the excretion rates of the (14)C to feces and urine were 66-83% and 13-25%, respectively. ... The major fecal metabolites possessed intact ester linkage hydroxylated in the acid or alcohol moiety such as hydroxymethyl-bifenthrin, 4'-OH-bifenthrin, and 3'- or 4'-OH-hydroxymethyl bifenthrin. Ester-cleaved products derived from mono- and dihydroxylated parent compounds were also detected. On the other hand, the majority of urinary metabolites were ester-cleaved products such as 4'-OH-BPacid (4'-hydroxy-2-methyl-3-phenylbenzoic acid), BPacid (2-methyl-3-phenylbenzoic acid), 4'-OH-BPalcohol (4'-hydroxy-2-methyl-3-phenylbenzyl alcohol), dimethoxy-BPacid, 4'-methoxy BPacid, dimethoxy BPalcohol, BPalcohol, TFPacid [3-(2-chloro-3,3,3-trifluoro-1-propenyl-2,2-dimethyl-cyclopropanecarboxylic acid], cis- and trans-hydroxymethyl TFPacid. The major metabolic pathways are considered to be hydrolysis of ester linkage, oxidation at the methyl group of the acid moiety and at the 3'- and 4'-positions of the phenyl group, and O-methylation. The conjugation reactions are considered to take place; however, detailed information is not available.
Fastest breakdown is seen with primary alcohol esters of trans-substituted acids since they undergo rapid hydrolytic and oxidative attack. For all secondary alcohol esters and for primary alcohol cis-substituted cyclopropanecarboxylates, oxidative attack is predominant. /Pyrethroids/
Pyrethrins are reportedly inactivated in the GI tract following ingestion. In animals, pyrethrins are rapidly metabolized to water soluble, inactive compounds. /Pyrethrins/
Bifenthrin, a pyrethroid pesticide, is estrogenic in vivo in fishes. However, bifenthrin is documented to be anti-estrogenic in vitro, in the ER-CALUX (estrogen receptor) cell line. We investigated whether metabolite formation is the reason for this incongruity. We exposed Menidia beryllina (inland silversides) to 10 ng/L bifenthrin, 10 ng/L 4-hydroxy bifenthrin, and 10 ng/L bifenthrin with 25 ug/L piperonyl butoxide (PBO) - a P450 inhibitor. Metabolite-exposed juveniles had significantly higher estrogen-mediated protein levels (choriogenin) than bifenthrin/PBO-exposed, while bifenthrinalone was intermediate (not significantly different from either). This suggests that metabolites are the main contributors to bifenthrin's in vivo estrogenicity.
Synthetic pyrethroids are generally metabolized in mammals through ester hydrolysis, oxidation, and conjugation, and there is no tendency to accumulate in tissues. In the environment, synthetic pyrethroids are fairly rapidly degraded in soil and in plants. Ester hydrolysis and oxidation at various sites on the molecule are the major degradation processes. /Pyrethroids/
来源:Hazardous Substances Data Bank (HSDB)
毒理性
致癌性证据
癌症分类:C组可能的人类致癌物
Cancer Classification: Group C Possible Human Carcinogen
A novel two-tiered analytical approach was used to characterize and quantify interactions between Type I and Type II pyrethroids on Hyalella azteca using standardized water column toxicity tests. Bifenthrin, permethrin, cyfluthrin and lambda-cyhalothrin were tested in all possible binary combinations across six experiments. All mixtures were analyzed for 4 d lethality, and two of the six mixtures (permethrin-bifenthrin and permethrin-cyfluthrin) were tested for subchronic 10 d lethality and sublethal effects on swimming motility and growth. Mixtures were initially analyzed for interactions using regression analyses, and subsequently compared to the additive models of Concentration Addition (CA) and Independent Action (IA) to further characterize mixture responses. Negative interactions (antagonistic) were significant in two of the six mixtures tested, including cyfluthrin-bifenthrin and cyfluthrin-permethrin, but only on the acute 4d lethality endpoint. In both cases mixture responses fell between the additive models of CA and IA. All other mixtures were additive across 4 d lethality, and bifenthrin-permethrin and cyfluthrin-permethrin were also additive on subchronic 10 d lethality and sublethal responses.
Piperonyl butoxide ... potentiates /insecticidal activity/ of pyrethrins by inhibiting the hydrolytic enzymes responsible for pyrethrins' metabolism in arthropods. When piperonyl butoxide is combined with pyrethrins, the insecticidal activity of the latter drug is increased 2-12 times /Pyrethrins/
At dietary level of 1000 ppm pyrethrins & 10000 ppm piperonyl butoxide ... /enlargement, margination, & cytoplasmic inclusions in liver cells of rats/ were well developed in only 8 days, but ... were not maximal. Changes were proportional to dosage & similar to those produced by DDT. Effects of the 2 ... were additive. /Pyrethrins/
Three carbamate (formetanate, methomyl, pyrimicarb) and one pyrethroid (bifenthrin) insecticides were investigated both as pure chemicals and as commercial formulations in order to unveil possible toxic effects of additives and solvents present in the commercial formulations and to evaluate the cellular stress response as a defense mechanism. Toxic effects were evaluated on A549 cells, derived from a human lung carcinoma, by measuring (1) threshold concentrations leading to a decrease of the growth rate (LOEC), (2) sublethal concentrations (SC) which arrested growth without killing the cells, and (3) expression levels of several stress proteins, i.e., HSP27, HSP72/73, HSP90, GRP78, and GRP94. As compared to the pure active molecule, LOEC appeared at lower concentrations when using the commercial formulations, i.e., Dicarzol (formetanate), Lannate20 (methomyl) and Talstar or Kiros EV (bifenthrin). Propylene glycol and propylene glycol monomethyl ether, respectively, present in Talstar and kiros, do not account for the high toxicity of these commercial formulations and do not potentiate the toxicity of bifenthrin. Additive but not synergistic adverse effects were observed when cells are exposed to a mixture of 4 different commercial formulations ... GRP78 was up-regulated by all the insecticides, commercial preparations being more efficient to trigger the stress reaction. This suggests that insecticides and additives present in commercial formulations disrupt ER functions. Conversely, HSP72/73 was found to be down-regulated by all the insecticides. This seems to be related with a decrease of protein synthesis in the cytosol, as a result of the ER unfolded protein response. Indeed, tunicamycin, known to inhibit N-linked glycosylation in the ER, was found to induce a similar inverse correlation between GRP78 overexpression and HSP72/73 under-expression. Expression of GRP94 was found to be increased and HSP27 lowered by the highest concentrations of bifenthrin commercial formulations. Methomyl and Lannate20 only induced an under-expression of HSP90.
Male and female rats were treated with (14)C-bifenthrin labeled in the acid or alcohol moiety at single oral doses of 4 and 35 mg/kg. (14)C was rapidly excreted into feces and urine, and the excretion rates of the (14)C to feces and urine were 66-83% and 13-25%, respectively. Highest residues were found in the fat, with values of slightly more than 1 ppm after low-dose administration and 8 and 16 ppm in males and females, respectively, after application of the high dose. Residue levels in other organs were in most cases <0.2 ppm after low-dose administration and <1 ppm after high-dose administration.
The tissue residues /of rats/ were examined after oral administration of (14)C-bifenthrin at 0.5 mg/kg/day for 70 days. The peak (14)C concentrations on an average were 9.6 ppm in fat, 1.7 ppm in skin, 0.4 ppm in liver, 0.3 ppm in kidney, 1.7 ppm in ovaries, 3.2 ppm in sciatic nerve, 0.06 ppm in whole blood, and 0.06 ppm in plasma. Analyses were extended for an additional 85 days following cessation of dosing (depuration phase). Half-lives of 51 days (fat), 50 days (skin), 19 days (liver), 28 days (kidney), and 40 days (ovaries and sciatic nerve) were estimated from (14)C-depuration. Analysis of the fat revealed that the parent chemical accounted for a majority (65-85%) of the (14)C-residues in fat.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
拟除虫菊酯通过完整皮肤局部应用时可以被吸收。
Pyrethrins are absorbed through intact skin when applied topically. /Pyrethrins/
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
双甲脒在大鼠口服、吸入和静脉给药后的药代动力学进行了描述。此外,还介绍了通过口服和吸入途径的拟除虫菊酯类化合物急性毒性。将雄性大鼠分为几组,通过口服灌胃给药3.1 mg/kg(每千克1毫升玉米油,临界急性口服基准剂量下限,BMDL)以及等效剂量的吸入(0.018 mg/L)持续4小时。在给药开始后的2、4、6、8和12小时,测量了血浆和大脑中双甲脒的浓度。血浆中双甲脒的最大浓度为361 ng/mL或0.853 uM(口服)和232 ng/mL或0.548 uM(吸入),在大脑中为83和73 ng/g。口服灌胃给药后的浓度-时间曲线下面积(AUC)值为1969 h ng/mL(血浆)和763 h ng/mL(大脑),吸入后的值为1584 h ng/mL(血浆)和619 h ng/mL(大脑)。静脉给药的结果是血浆和大脑的表观末端半衰期(t1/2)分别为13.4小时和11.1小时,血浆和大脑的AUC0-∞值分别为454和1566 h ng/mL。血浆的清除率为37 mL/min/kg。口服给药后的血浆和大脑浓度峰值通常略高(大约14%)。双甲脒的吸入给药避免了肝脏的首过效应,没有导致血浆或大脑中暴露增加。消除半衰期与其他拟除虫菊酯类化合物相当,表明生物积累潜力较小。
... The pharmacokinetics of bifenthrin in the rat after oral, inhalation and intravenous administration is described. Pyrethroid acute toxicity via oral and inhalation routes is also presented. Groups of male rats were dosed by oral gavage at 3.1 mg/kg in 1 mL/kg of corn oil (the critical, acute, oral benchmark dose lower limit, BMDL) and at an equivalent dose by inhalation (0.018 mg/L) for 4 hr. At 2, 4, 6, 8 and 12 hr after dosing initiation, blood plasma and brain bifenthrin concentrations were measured. The maximum concentrations of bifenthrin in plasma were 361 ng/mL or 0.853 uM (oral) and 232 ng/mL or 0.548 uM (inhalation), and in brain they were 83 and 73 ng/g. The area under the concentration versus time curve (AUC) values were 1969 h ng/mL (plasma) and 763 h ng/mL (brain) following oral gavage dosing, and 1584 h ng/mL (plasma) and 619 h ng/mL (brain) after inhalation. Intravenous dosing resulted in apparent terminal half-life (t1/2 ) values of 13.4 h (plasma) and 11.1 h (brain) and in AUC0-infinity values of 454 and 1566 h ng/mL for plasma and brain. Clearance from plasma was 37 mL/min/kg. Peak plasma and brain concentrations were generally a little higher after oral dosing (by ca 14%). Inhalation administration of bifenthrin did not cause increases in exposure in plasma or brain by avoiding first-pass effects in the liver. The elimination t1/2 was comparable with other pyrethroids and indicated little bioaccumulation potential. ...
... This study evaluated the oral disposition and bioavailability of bifenthrin in the adult male Long-Evans rat. In the disposition study, rats were administered bifenthrin (0.3 or 3 mg/kg) by oral gavage and serially sacrificed (0.25 hr to 21 days). Blood, liver, brain and adipose tissue were removed. In the bioavailability study, blood was collected serially from jugular vein cannulated rats (0.25 to 24 hr) following oral (0.3 or 3 mg/kg) or intravenous (0.3 mg/kg) administration of bifenthrin. Tissues were extracted and analyzed for bifenthrin by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Bifenthrin concentration in blood and liver peaked 1-2-hr post-oral administration and were approximately 90 ng/mL (or g) and 1000 ng/mL (or g) for both tissues at 0.3 and 3 mg/kg, respectively. Bifenthrin was rapidly cleared from both blood and liver. Brain concentrations peaked at 4-6 hr and were lower than in blood at both doses (12 and 143 ng/g). Bifenthrin in adipose tissue peaked at the collected time points of 8 (157 ng/g) and 24 (1145 ng/g) hr for the 0.3 and 3 mg/kg doses, respectively and was retained 21 days post-oral administration. Following intravenous administration, the blood bifenthrin concentration decreased bi-exponentially, with a distribution half-life of 0.2 hr and an elimination half-life of 8 hr. Bifenthrin bioavailability was approximately 30%. These disposition and kinetic bifenthrin data may decrease uncertainties in the risk assessment for this pyrethroid insecticide.
Practical ways from aldehydes to 2-chloro-1,1,1-trifluoro-2-alkenes and 2-chloro-1,1-difluoro-1-alken-3-ols
作者:Makoto Fujita、Tamejiro Hiyama
DOI:10.1016/s0040-4039(00)84873-x
日期:1986.1
Practical, Stereocontrolled Synthesis of Polyfluorinated Artificial Pyrethroids
作者:Makoto Fujita、Kiyosi Kondo、Tamejiro Hiyama
DOI:10.1246/bcsj.60.4385
日期:1987.12
Practical and stereocontrolled approaches to polyfluorinated synthetic pyrethroids based on aldehyde addition of CF3CCl2ZnCl are described. The zinc reagent was allowed to react with 3-formyl-2,2-dimethylcyclopropanecarboxylates (6) to give the corresponding adducts. These were acetylated and then reduced again with zinc to afford (1R*, 3S*)-3-(2-chloro-3,3,3-trifluoro-1-propenyl)-2,2-dimethylcyclopropanecarboxylates (12). The (1R*, 3R*)-isomer was derived from 2,2-dichloro-1,1,1-trifluoro-5-methyl-4-hexen-3-ol by diazoacetylation, Cu(II)-catalyzed intramolecular carbene addition, and finally by the zinc reduction. An alternative access to 12 and its halogen homologues of the (Z)-pyrethroids involves addition of 1-halo-2,2-difluoroethenyl group across the CHO group of 6 and subsequent regio- and stereoselective halogenation.