molecules. Dehydration of this intercalate leads to disturbing of their arrangement, mainly in the case of protonated guest molecules. In the case of dehydrated γ-ZrP, the guest molecules are head-to-tail ordered and the guest molecules in the hydrated form of γ-ZrP are more disordered than in the dehydrated intercalate. The simulations also described a layer shift present in the dehydrated γ-ZrP intercalate
4-[4-(N,N-
二甲氨基)苯基偶氮]
吡啶(进一步表示为G)代表一种推拉分子,可以插入
磷酸锆(α-ZrP和γ-ZrP)和4-磺基
苯基膦酸
锆中(Zr
SPP)。对于α-ZrP·0.2G·1.5H2O、γ-ZrP·0.2G·1.5H2O和Zr
SPP·0.5G·1H2O,所获得的插层形成单相,层间距分别为12.75、16.31和24.11 A。插层时层间距离的增加表明插层客体的分子与主体层平行。所有的插层都通过红外和紫外-可见光谱进一步表征。层间空间中的客体排列是通过分子模拟方法获得的。在
水合和脱
水 α-ZrP 和 γ-ZrP 插层模型中,分别对质子化和非质子化形式的客体进行计算。在 α-ZrP 嵌入的情况下,层间
水的存在稳定了客体分子的头尾排列。这种嵌入物的脱
水会扰乱它们的排列,主要是在质子化客体分子的情况下。在脱
水 γ-ZrP 的情况下,客体分子是头对尾有序的,γ-ZrP
水合形式的客体分子比脱
水嵌入物更无序。模拟还描述了脱
水的