摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

C18-lyso-GM1 | 94458-59-0

中文名称
——
中文别名
——
英文名称
C18-lyso-GM1
英文别名
β-D-galactopyranosyl-(1→3)-(2-acetamido-2-deoxy-β-D-galactopyranosyl)-(1→4)-(5-acetamido-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosylonic acid)-(2→3)-β-D-galactopyranosyl-(1→4)-β-D-glucopyranosyl-(1→1)-(2S,3R,4E)-2-amino-4-octadecene-1,3-diol;lyso-GM1;(2S,4S,5R,6R)-5-acetamido-2-[(2S,3R,4R,5S,6R)-5-[(2S,3R,4R,5R,6R)-3-acetamido-5-hydroxy-6-(hydroxymethyl)-4-[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-2-[(2R,3S,4R,5R,6R)-6-[(E,2S,3R)-2-amino-3-hydroxyoctadec-4-enoxy]-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy-3-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-4-hydroxy-6-[(1R,2R)-1,2,3-trihydroxypropyl]oxane-2-carboxylic acid
C<sub>18</sub>-lyso-GM1化学式
CAS
94458-59-0
化学式
C55H97N3O30
mdl
——
分子量
1280.38
InChiKey
ARKDJZHBBZECNE-LSYRYXEQSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    1449.8±65.0 °C(Predicted)
  • 密度:
    1.50±0.1 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    -6.9
  • 重原子数:
    88
  • 可旋转键数:
    35
  • 环数:
    5.0
  • sp3杂化的碳原子比例:
    0.91
  • 拓扑面积:
    538
  • 氢给体数:
    20
  • 氢受体数:
    31

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    C18-lyso-GM1棕榈酰氯碳酸氢钠 作用下, 以 四氢呋喃 为溶剂, 反应 2.0h, 以99%的产率得到β-D-galactopyranosyl-(1→3)-(2-acetamido-2-deoxy-β-D-galactopyranosyl)-(1→4)-(5-acetamido-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosylonic acid)-(2→3)-β-D-galactopyranosyl-(1→4)-β-D-glucopyranosyl-(1→1)-(2S,3R,4E)-2-hexadecanamino-4-octadecene-1,3-diol
    参考文献:
    名称:
    简化的优先神经节苷脂癌症抗原化学化学全合成
    摘要:
    展示了一种高效的简化化学酶策略,可从市售乳糖和植物鞘氨醇中合成四种优先神经节苷脂类癌抗原GD2,GD3,岩藻糖基GM1和GM3。化学合成了乳糖基鞘氨醇(LacβSph)(13 g规模),进行了连续一锅多酶(OPME)糖基化反应,并进行了简便的C18碳粉纯化,然后改善了酰化条件,形成了目标神经节苷脂,包括岩藻糖基GM1,以前从未合成过。
    DOI:
    10.1039/c8ob01087k
  • 作为产物:
    描述:
    N-乙酰神经氨酸水合物CMP-唾液酸合成酶 、 Pasteurella multocida inorganic pyrophosphatase 、 Streptococcus pneumoniae TIGR4 galactokinase 、 Bifidobacterium longum UDP-sugar pyrophosphorylase 、 Pasteurella multocida α2–3-sialyltransferase 3 、 bifidobacterium longum strain ATCC55813 N-acetylhexosamine-1-kinase 、 pasteurella multocida N-acetylglucosamine uridylyltransferase 、 sodium cholate 、 胞苷-5’-三磷酸5’-三磷酸腺苷 、 sodium hydroxide 、 magnesium chloride 、 UTP 作用下, 以 aq. buffer 为溶剂, 反应 56.0h, 生成 C18-lyso-GM1
    参考文献:
    名称:
    短程化学酶法全合成 GM1 神经节苷脂的工艺工程和糖基转移酶改进
    摘要:
    GM1 神经节苷脂的化学酶法全合成:开发了组合工艺工程和生物催化剂改进策略,用于从 ( S )-Garner 醛化学酶法全合成 GM1 神经节苷脂。两种关键的糖基转移酶在大肠杆菌中的可溶性表达和酶稳定性得到了改善。人们发现,在后面的糖基化步骤中添加去垢剂的多步一锅多酶 (MSOPME) 工艺对于获得含有不同唾液酸形式的 GM1 神经节苷脂非常有效。
    DOI:
    10.1002/chem.202300005
点击查看最新优质反应信息

文献信息

  • Synthesis of Photopolymerizable Glycolipids and their Application as Scaffolds to Immobilize Proteins with a Micron-Sized Pattern
    作者:Noriko Nagahori、Kenichi Niikura、Reiko Sadamoto、Kenji Monde、Shin-Ichiro Nishimura
    DOI:10.1071/ch02182
    日期:——

    Photopolymerizable glycolipids incorporating ceramide- or amido-type linkers and able to form stable monolayers were efficiently synthesized by chemical and enzymatic methods. Glycolipid polymer films served as platforms for the immobilization of proteins through specific carbohydrate–protein interactions at the air–water interface. Carbohydrate-binding proteins deposited on the glycolipid film were observed by atomic force microscopy, which showed varying submicron-sized protein patterns such as dendrites, dots, and networks, depending on the lipid structure, membrane preparation process, and sugar density of the membrane. Surface plasmon resonance measurement confirmed that the subunit-type lectins immobilized on the glycolipid membranes exhibited the ability to interact specifically with carbohydrate ligands by using unoccupied binding sites.

    通过化学和酶解方法,高效合成了含有神经酰胺或酰胺型连接体并能形成稳定单层的可光聚合的糖脂。糖脂聚合物薄膜通过空气-水界面上特定的碳水化合物-蛋白质相互作用,成为固定蛋白质的平台。原子力显微镜观察了沉积在糖脂膜上的碳水化合物结合蛋白,发现根据脂质结构、膜制备工艺和膜的糖密度不同,蛋白的形态也呈现出树枝状、点状和网状等不同的亚微米级大小。表面等离子共振测量证实,固定在糖脂膜上的亚单位型凝集素能够利用未被占用的结合位点与碳水化合物配体发生特异性相互作用。
  • Glycosynthase-Mediated Synthesis of Glycosphingolipids
    作者:Mark D. Vaughan、Karl Johnson、Shawn DeFrees、Xiaoping Tang、R. Antony J. Warren、Stephen G. Withers
    DOI:10.1021/ja058469n
    日期:2006.5.1
    Glycosphingolipids play crucial roles in virtually every stage of the cell cycle, and their clinical administration has been proposed as a treatment for Alzheimer's, Parkinson's, stroke, and a range of other conditions. However, lack of supply has severely hindered testing of this potential. A novel glycosynthase-based synthetic strategy is demonstrated, involving a mutant of an endoglycoceramidase in which the catalytic nucleophile has been ablated. This mutant efficiently couples a range of glycosyl fluoride donors with a range of sphingosine-based acceptors in yields around 95%. This technology opens the door to large-scale production of glycosphingolipids and, thus, to clinical testing.
  • Synthesis of reference standards to enable single cell metabolomic studies of tetramethylrhodamine-labeled ganglioside GM1
    作者:E. Andreas Larsson、Ulf Olsson、Colin D. Whitmore、Rita Martins、Guido Tettamanti、Ronald L. Schnaar、Norman J. Dovichi、Monica M. Palcic、Ole Hindsgaul
    DOI:10.1016/j.carres.2006.10.002
    日期:2007.2
    Ganglioside GM1 and its seven potential catabolic products: asialo-GM1, GM2, asialo-GM2, GM3, Lac-Cer, Glc-Cer and Cer, were labeled with tetramethylrhodamine (TMR) to permit ultra-sensitive analysis using laser-induced fluorescence (LIF) detection. The preparation involved acylation of the homogenous C-18 lyso-forms of GM1, Lac-Cer, Glc-Cer and Cer with the N-hydroxysuccinimide ester of a beta-alanine-tethered 6-TMR derivative, followed by conversion of these labeled products using galactosidase, sialidase, and sialyltransferase enzymes. The TMR-glycolipid analogs produced are detectable on TLC down to the I ng level by the naked eye. All eight compounds could be separated within 4 min in capillary electrophoresis where they could be detected at the zeptomole (ca. 1000 molecule) level using LIF. (c) 2006 Elsevier Ltd. All rights reserved.
  • Streamlined chemoenzymatic total synthesis of prioritized ganglioside cancer antigens
    作者:Hai Yu、Abhishek Santra、Yanhong Li、John B. McArthur、Tamashree Ghosh、Xiaoxiao Yang、Peng G. Wang、Xi Chen
    DOI:10.1039/c8ob01087k
    日期:——
    A highly efficient streamlined chemoenzymatic strategy for total synthesis of four prioritized ganglioside cancer antigens GD2, GD3, fucosyl GM1, and GM3 from commercially available lactose and phytosphingosine is demonstrated. Lactosyl sphingosine (LacβSph) was chemically synthesized (on a 13 g scale), subjected to sequential one-pot multienzyme (OPME) glycosylation reactions with facile C18-cartridge
    展示了一种高效的简化化学酶策略,可从市售乳糖和植物鞘氨醇中合成四种优先神经节苷脂类癌抗原GD2,GD3,岩藻糖基GM1和GM3。化学合成了乳糖基鞘氨醇(LacβSph)(13 g规模),进行了连续一锅多酶(OPME)糖基化反应,并进行了简便的C18碳粉纯化,然后改善了酰化条件,形成了目标神经节苷脂,包括岩藻糖基GM1,以前从未合成过。
  • Process Engineering and Glycosyltransferase Improvement for Short Route Chemoenzymatic Total Synthesis of GM1 Gangliosides
    作者:Hai Yu、Libo Zhang、Xiaohong Yang、Yuanyuan Bai、Xi Chen
    DOI:10.1002/chem.202300005
    日期:——
    Chemoenzymatic total synthesis of GM1 gangliosides: Combined process engineering and biocatalyst improvement strategies are developed for chemoenzymatic total synthesis of GM1 gangliosides from (S)-Garner's aldehyde. Two key glycosyltransferases are improved on their soluble expression in E. coli and enzyme stability. The multistep one-pot multienzyme (MSOPME) process with the addition of a detergent
    GM1 神经节苷脂的化学酶法全合成:开发了组合工艺工程和生物催化剂改进策略,用于从 ( S )-Garner 醛化学酶法全合成 GM1 神经节苷脂。两种关键的糖基转移酶在大肠杆菌中的可溶性表达和酶稳定性得到了改善。人们发现,在后面的糖基化步骤中添加去垢剂的多步一锅多酶 (MSOPME) 工艺对于获得含有不同唾液酸形式的 GM1 神经节苷脂非常有效。
查看更多

同类化合物

鞘磷酯 鞘氨醇半乳糖苷-3'-硫酸酯 西地芬戈 葡糖鞘氨醇半乳糖苷 脑苷脂类 脑苷脂D 脑苷脂 B 神经鞘氨醇半乳糖苷 神经酸酰胺 神经酰胺N-甲基氨基乙基膦酸酯 神经酰胺 神经节苷酯Gm3内酯 神经节苷酯GM1(牛脑) 神经节苷脂GM3 溶血神经酰胺三己糖苷 正二十四烷基二氢-葡糖脑苷脂 己酰神经鞘氨醇 大豆脑苷 I 双唾液酸神经节苷酯GD1A 双唾液酸神经节苷脂GD2 单唾液酸神经节苷酯 十四酰鞘氨醇 人脾脏葡糖苷酰鞘氨醇 二羟基神经酰胺 二十二烷酰胺,N-[1-[(b-D-吡喃葡萄糖氧基)甲基]-2,3-二羟基-5-十七碳烯基]-2-羟基-(9CI) 二十二烷酰胺,N-[(1S,2R,3E,7E,9E)-1-[(b-D-吡喃葡萄糖氧基)甲基]-2-羟基-8-甲基-3,7,9-十七碳三烯-1-基]-2-羟基-,(2R)- 二十二烷酰胺,N-[(1S,2R,3E)-2-羟基-1-(羟甲基)-3-十五碳烯基]- 乳酰基-N-脂酰基鞘氨醇(牛) 乳糖酰基鞘糖脂 乳糖酰基鞘氨醇 β-D-葡萄糖基C4-神经酰胺 alpha-半乳糖基-C16-神经酰胺 [(E,2S,3R)-3-羟基-2-[[(Z)-十八碳-9-烯酰基]氨基]十八碳-4-烯基]2-三甲基铵乙基磷酸酯盐 [(E,2S,3R)-3-羟基-2-[[(Z)-3-芘-1-基丙-2-烯酰基]氨基]十八碳-4-烯基]2-三甲基铵乙基磷酸酯盐 [(E,2S,3R)-3-羟基-2-[11-(芘-1-基磺酰基氨基)十一烷酰基氨基]十八碳-4-烯基]2-三甲基铵乙基磷酸酯盐 [(2R,3S,4S,5R,6R)-3,5-二羟基-2-(羟基甲基)-6-[(E,2S,3R)-3-羟基-2-(二十四烷酰基氨基)十八碳-4-烯氧基]四氢吡喃-4-基]氢硫酸盐 TNPAL-鞘磷脂 O-甘露糖基-(1-3)-O-甘露糖基-(1-4)-O-吡喃葡萄糖基-(1-1)-2-N-二十四烷酰基鞘氨醇 N-(NBD-氨基脲酰)沙丁胺醇 N-辛酰基神经酰胺-1-磷酸酯(铵盐) N-辛酰基4-羟基鞘氨醇(酿酒酵母) N-辛酰基-D-神经鞘氨醇 N-肉豆蔻酰-D-赤型-鞘氨醇 N-神经酰基-D-赤型鞘氨酰基磷酸胆碱 N-硬脂酰神经鞘氨醇 N-硬脂酰植物鞘氨醇 N-硬脂酰基-DL-二氢乳脑苷 N-硬脂酰-dl-二氢-葡糖脑苷脂 N-硬脂酰-D-鞘磷脂 N-癸酰-D-鞘胺醇