Inhibitors of Farnesyl Protein Transferase. 4-Amido, 4-Carbamoyl, and 4-Carboxamido Derivatives of 1-(8-Chloro-6,11-dihydro-5H-benzo[5,6]- cyclohepta[1,2-b]pyridin-11-yl)piperazine and 1-(3-Bromo-8-chloro-6,11- dihydro-5H-benzo[5,6]cyclohepta[1,2-b]pyridin-11-yl)piperazine
摘要:
The synthesis of a variety of novel 4-amido, 4-carbamoyl and 4-carboxamido derivatives of 1-(8-chloro-6,11-dihydro-5H-benzo[5,6]cyclohepta[1,2-b]pyridin -11-yl)piperazine to explore the SAR of of this series of FPT inhibitors is described. This resulted in the synthesis of the 4- and 3-pyridylacetyl analogues 45a and 50a, respectively, both of which were orally active but were found to be rapidly metabolized in vivo. Identification of the principal metabolites led to the synthesis of a variety of new compounds that would be less readily metabolized, the most interesting of which were the 3- and 4-pyridylacetyl N-oxides 80a and 83a. Novel replacements for the pyridylacetyl moiety were also sought, and this resulted in the discovery of the 4-N-methyl and 4-N-carboxamidopiperidinylacetyl derivatives 135a and 160a, respectively. All of these derivatives exhibited greatly improved pharmacokinetics. The synthesis of the corresponding 3-bromo analogues resulted in the discovery of the 4-pyridylacetyl N-oxides 83b (+/-) and 85b [11S(-)] and the 4-carboxamidopiperidinylacetamido derivative 160b (+/-), all of which exhibited potent FPT inhibition in vitro. All three showed excellent oral bioavailability in vivo in nude mice and cynomolgus monkeys and exhibited excellent antitumor efficacy against a series of tumor cell lines when dosed orally in nude mice.
Tricyclic carbamate compounds useful for inhibition of G-protein
申请人:Schering Corporation
公开号:US06075025A1
公开(公告)日:2000-06-13
A method of inhibiting Ras function and therefore inhibiting cellular growth is disclosed. The method comprises the administration of a compound of Formula 1.0 ##STR1## Also disclosed are novel compounds of the formulas: ##STR2## Also disclosed are processes for making 3-substituted compounds of the Formulas 1.1, 1.2 and 1.3. Further disclosed are novel compounds which are intermediates in the processes for making the 3-substituted compounds of Formulas 1.1, 1.2, and 1.3.
A series of heteroaryl-substituted alkylcarbamates have been synthesized and evaluated for their inhibitory potency against fatty acid amide hydrolase (FAAH).
Fattyacidamidehydrolase (FAAH) is a serine hydrolase that terminates the analgesic and anti‐inflammatory effects of endocannabinoids such as anandamide. Herein, structure–activity relationship studies on a new series of aryl N‐(ω‐imidazolyl‐ and ω‐tetrazolylalkyl)carbamate inhibitors of FAAH were investigated. As one result, a pronounced increase in inhibitory potency was observed if a phenyl residue
A novel pyridyl non-aromatic nitrogen-containing heterocyclic-1-carboxylate compound or its pharmaceutically acceptable salt has a potent FAAH-inhibitory activity. Further, the pyridyl non-aromatic nitrogen-containing heterocyclic-1-carboxylate compound of the present disclosure is also useful in the treatment of urinary frequency and urinary incontinence, overactive bladder and/or pain.
Tricyclic carbamate compounds useful for inhibition of g-protein function and for treatment of proliferative diseases
申请人:Schering Corporation
公开号:US06300338B1
公开(公告)日:2001-10-09
A method of inhibiting Ras function and therefore inhibiting cellular growth is disclosed. The method comprises the administration of a compound of Formula 1.0
Also disclosed are novel compounds of the formulas:
Also disclosed are processes for making 3-substituted compounds of the Formulas 1.1, 1.2 and 1.3.
Further disclosed are novel compounds which are intermediates in the processes for making the 3-substituted compounds of Formulas 1.1, 1.2, and 1.3.