DOTA-M8: An Extremely Rigid, High-Affinity Lanthanide Chelating Tag for PCS NMR Spectroscopy
摘要:
A new lanthanide chelating tag (M8) for paramagnetic labeling of biomolecules is presented, which is based on an eight-fold, stereoselectively methyl-substituted DOTA that can be covalently linked to the host molecule by a single disulfide bond. The steric overcrowding of the DOTA scaffold leads to an extremely rigid, kinetically and chemically inert lanthanide chelator Its steric bulk restricts the motion of the tag relative to the host molecule. These properties result in very large pseudocontact shifts (>5 ppm) and residual dipolar couplings (>20 Hz) for Dy-M8 linked to ubiquitin, which are unprecedented for a small, single-point-attachment tag. Such large pseudocontact shifts should be well detectable even for larger proteins and distances beyond similar to 50 angstrom. Due to its exceptionally high stability and lanthanide affinity M8 can be used under extreme chemical or physical conditions, such as those applied for protein denaturation, or when it is undesirable that buffer or protein react with excess lanthanide ions.
DOTA-M8: An Extremely Rigid, High-Affinity Lanthanide Chelating Tag for PCS NMR Spectroscopy
摘要:
A new lanthanide chelating tag (M8) for paramagnetic labeling of biomolecules is presented, which is based on an eight-fold, stereoselectively methyl-substituted DOTA that can be covalently linked to the host molecule by a single disulfide bond. The steric overcrowding of the DOTA scaffold leads to an extremely rigid, kinetically and chemically inert lanthanide chelator Its steric bulk restricts the motion of the tag relative to the host molecule. These properties result in very large pseudocontact shifts (>5 ppm) and residual dipolar couplings (>20 Hz) for Dy-M8 linked to ubiquitin, which are unprecedented for a small, single-point-attachment tag. Such large pseudocontact shifts should be well detectable even for larger proteins and distances beyond similar to 50 angstrom. Due to its exceptionally high stability and lanthanide affinity M8 can be used under extreme chemical or physical conditions, such as those applied for protein denaturation, or when it is undesirable that buffer or protein react with excess lanthanide ions.
Analysis of the isomer ratios of polymethylated-DOTA complexes and the implications on protein structural studies
作者:Ana Christina L. Opina、Madeleine Strickland、Yong-Sok Lee、Nico Tjandra、R. Andrew Byrd、Rolf E. Swenson、Olga Vasalatiy
DOI:10.1039/c5dt03210e
日期:——
prepared. The isomer ratio of SSSS-SSSS-M4DOTMA complexed with a series of lanthanideions was carefully investigated using RP-HPLC and NMR. A square antiprismatic (SAP) configuration was exclusively observed for the early lanthanides, while the twisted square antiprismatic (TSAP) geometry was preferred as the lanthanideionsize decreases. The late lanthanides preferentially adopted the TSAP geometry. One
Spectral parameters of Gd(III) complexes are intimately linked to the performance of the Gd(III)nitroxide or Gd(III)-Gd(III) double electron-electron resonance (DEER or PELDOR) techniques, as well as to that of relaxation induced dipolar modulation enhancement (RIDME) spectroscopy with Gd(III) ions. These techniques are of interest for applications in structural biology, since they can selectively detect site-to-site distances in biomolecules or biomolecular complexes in the nanometer range. Here we report relaxation properties, echo detected EPR spectra, as well as the magnitude of the echo reduction effect in Gd(III)-nitroxide DEER for a series of Gadolinium(III) complexes with chelating agents derived from tetraazacyclododecane. We observed that solvent deuteration does not only lengthen the relaxation times of Gd(III) centers but also weakens the DEER echo reduction effect. Both of these phenomena lead to an improved signal-to-noise ratios or, alternatively, longer accessible distance range in pulse EPR measurements. The presented data enrich the knowledge on paramagnetic Gd(III) chelate complexes in frozen solutions, and can help optimize the experimental conditions for most types of the pulse measurements of the electron-electron dipolar interactions. (C) 2015 Elsevier Inc. All rights reserved.
DOTA-M8: An Extremely Rigid, High-Affinity Lanthanide Chelating Tag for PCS NMR Spectroscopy
A new lanthanide chelating tag (M8) for paramagnetic labeling of biomolecules is presented, which is based on an eight-fold, stereoselectively methyl-substituted DOTA that can be covalently linked to the host molecule by a single disulfide bond. The steric overcrowding of the DOTA scaffold leads to an extremely rigid, kinetically and chemically inert lanthanide chelator Its steric bulk restricts the motion of the tag relative to the host molecule. These properties result in very large pseudocontact shifts (>5 ppm) and residual dipolar couplings (>20 Hz) for Dy-M8 linked to ubiquitin, which are unprecedented for a small, single-point-attachment tag. Such large pseudocontact shifts should be well detectable even for larger proteins and distances beyond similar to 50 angstrom. Due to its exceptionally high stability and lanthanide affinity M8 can be used under extreme chemical or physical conditions, such as those applied for protein denaturation, or when it is undesirable that buffer or protein react with excess lanthanide ions.