摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

5-acetyl-3-sec-butyl-5-hydroxy-imidazolidine-2,4-dione | 71239-22-0

中文名称
——
中文别名
——
英文名称
5-acetyl-3-sec-butyl-5-hydroxy-imidazolidine-2,4-dione
英文别名
2,4-Imidazolidinedione, 5-acetyl-5-hydroxy-3-(1-methylpropyl)-;5-acetyl-3-butan-2-yl-5-hydroxyimidazolidine-2,4-dione
5-acetyl-3-<i>sec</i>-butyl-5-hydroxy-imidazolidine-2,4-dione化学式
CAS
71239-22-0
化学式
C9H14N2O4
mdl
——
分子量
214.221
InChiKey
QLQXGYVMAPHAJX-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -0.3
  • 重原子数:
    15
  • 可旋转键数:
    3
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.67
  • 拓扑面积:
    86.7
  • 氢给体数:
    2
  • 氢受体数:
    4

反应信息

点击查看最新优质反应信息

文献信息

  • ACHER, A.;SALTZMAN, S., TOXIC ORG. CHEM. POROUS MEDIA: PAP. 2ND INT. WORKSHOP BEHAV. POLLUT. PORO+
    作者:ACHER, A.、SALTZMAN, S.
    DOI:——
    日期:——
  • Mechanistic Investigations Concerning the Aqueous Ozonolysis of Bromacil
    作者:Cathleen J. Hapeman、Brent G. Anderson、Alba Torrents、Aurel J. Acher
    DOI:10.1021/jf9600420
    日期:1997.3.1
    Bromacil ozonolysis was examined to determine the mechanism of product formation in an effort to optimize a chemical-microbial remediation strategy for contaminated waters. Two debrominated products, 3-sec-butyl-5-acetyl-5-hydroxyhydantoin (II) (24%) and 3-sec-butylparabanic acid (III) (56%), and a dibromohydrin, 3-sec-butyl-5,5-dibromo-6-methyl-6-hydro (IV) (20%), were formed. The latter compound, arising from HOBr addition to bromacil, reverted back to starting material, causing the treated solution to remain somewhat phytotoxic. Mass balance studies provided evidence for parallel reaction pathways as opposed to a series pathway where II gives rise to III. Addition of hydrogen peroxide slightly decreased the rate of bromacil degradation while the addition of tert-butyl alcohol (t-BuOH), a hydroxy radical scavenger, increased the degradation rate, strongly suggesting that the mechanism does not involve hydroxy radicals but direct ozone attack at the double bond. A much lower yield of IV, 6%, relative to the control was observed with H2O2, whereas a slightly higher yield, 23%, was found with t-BuOH.
  • Comparison of Formation and Biodegradation of Bromacil Oxidation Products in Aqueous Solutions
    作者:Aurel J. Acher、Cathleen J. Hapeman、Daniel R. Shelton、Mark T. Muldoon、William R. Lusby、Adi Avni、Rolland Waters
    DOI:10.1021/jf00045a039
    日期:1994.9
    A comparative study of several oxidation methods of aqueous bromacil (I) solutions was conducted as part of a series of investigations concerning the chemical and biological remediation of pesticide-laden wastes. Ozonation (A), UV photolysis at 254 nn (B), and sensitized sunlight photodegradation (C) methods were examined. The A products were isolated and their structures elucidated by mass spectroscopy, various C-13 and H-1 NMR techniques, and other chemical methods. Three main A products were identified: 3-sec-butyl-5-acetyl-5-hydroxyhydantoin (II, ca. 5%), 3-sec-butylparabanic acid (III, ca. 20%), and 3-sec-butyl-5,5-dibromo-6-methyl-6-hydroxyuracil (IV, ca. 5%), which was also synthesized via hydroxybromination of bromacil; a fourth product (VII) was obtained in minute amount but was not identified. The aqueous solutions of IV are unstable and its decomposition led to re-formation of I. The main products found in B [(3-sec-butyl-6-methyluracil (V) and a dimer compound, VI] and C (II and VI) were similar to those described previously. The biodegradation assays of I, A, B, and C solutions were investigated using activated sludge, a pure culture of Klebsiella terragena (DRS-I), or soil; they indicated that the B and C solutions were more biodegradable than A solutions, while the parent material (I) was nonbiodegradable. A phytotoxicity bioassay, using Nicotiana tabacum seedlings, showed complete detoxification of the B and C solutions but only partial detoxification of the A and IV solutions. An attempt has been made to evaluate the most suitable method of degradation of solutions of I.
  • Kinetics of Bromacil Ozonolysis
    作者:Alba Torrents、Brent G. Anderson、Cathleen J. Hapeman
    DOI:10.1021/jf970651n
    日期:1998.4.1
    Chemical oxidation processes have been used successfully in the degradation of organic pollutants, yet information is limited concerning the kinetic descriptions of the reaction mechanisms. In this study, the kinetics of bromacil (5-bromo-3-sec-butyl-6-methyluracil, a herbicide) ozonolysis was examined. From laboratory observations, a mechanism was proposed by which direct ozone attack occurred and the degradation pathway proceeded via two parallel reactions. The program MLAB was used to provide a numerical solution for the system of differential equations that described the mechanism. Rate parameters were determined using the slowest reaction system (H2O2/O-3). The kinetic model was then tested on a system with only bromacil and on a system containing a radical scavenger. This mathematical model is reasonably consistent with the experimental observations that the addition of hydrogen peroxide significantly reduces the formation of the byproduct responsible for the residual phytotoxicity of the waste stream.
  • SALTZMAN, S.;ACHER, A. J.;BRATES, N.;HOROWITZ, M.;GEVELBERG, A., PESTIC. SCI., 1982, 13, N 2, 211-217
    作者:SALTZMAN, S.、ACHER, A. J.、BRATES, N.、HOROWITZ, M.、GEVELBERG, A.
    DOI:——
    日期:——
查看更多

同类化合物

(R)-4-异丙基-2-恶唑烷硫酮 麻黄恶碱 顺-八氢-2H-苯并咪唑-2-酮 顺-1-(4-氟苯基)-4-[1-(4-氟苯基)-4-羰基-1,3,8-三氮杂螺[4.5]癸-8-基]环己甲腈 非达司他 降冰片烯缩醛3-((1S,2S,4S)-双环[2.2.1]庚-5-烯-2-羰基)恶唑烷-2-酮 阿齐利特 阿那昔酮 阿洛双酮 阿帕鲁胺 阿帕他胺杂质2 铟烷-2-YL-甲基胺盐酸 钠2-{[4,5-二羟基-3-(羟基甲基)-2-氧代-1-咪唑烷基]甲氧基}乙烷磺酸酯 重氮烷基脲 詹氏催化剂 解草恶唑 解草噁唑 表告依春 螺莫司汀 螺立林 螺海因氮丙啶 螺[1-氮杂双环[2.2.2]辛烷-8,5'-咪唑烷]-2',4'-二酮 苯甲酸,4-氟-,2-[5,7-二(三氟甲基)-1,8-二氮杂萘-2-基]-2-甲基酰肼 苯氰二硫酸,1-氰基-1-甲基-4-氧代-4-(2-硫代-3-噻唑烷基)丁酯 苯妥英钠杂质8 苯妥英-D10 苯妥英 苯基硫代海因半胱氨酸钠盐 苯基硫代乙内酰脲-谷氨酸 苯基硫代乙内酰脲-蛋氨酸 苯基硫代乙内酰脲-苯丙氨酸 苯基硫代乙内酰脲-色氨酸 苯基硫代乙内酰脲-脯氨酸 苯基硫代乙内酰脲-缬氨酸 苯基硫代乙内酰脲-异亮氨酸 苯基硫代乙内酰脲-天冬氨酸 苯基硫代乙内酰脲-亮氨酸 苯基硫代乙内酰脲-丙氨酸 苯基硫代乙内酰脲-D-苏氨酸 苯基硫代乙内酰脲-(NΕ-苯基硫代氨基甲酰)-赖氨酸 苯基乙内酰脲-甘氨酸 苏氨酸-1-(苯基硫基)-2,4-咪唑烷二酮(1:1) 色氨酸标准品002 膦酸,(2-羰基-1-咪唑烷基)-,二(1-甲基乙基)酯 脱氢-1,3-二甲基尿囊素 聚(d(A-T)铯) 羟甲基-5,5-二甲基咪唑烷-2,4-二酮 羟基香豆素 美芬妥英 美芬妥英