摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(7R,8R,9S)-7,8-dihydroxy-7,9-dimethyl-3-propan-2-yl-8H-pyrimido[2,1-f]purine-9-carboxylic acid

中文名称
——
中文别名
——
英文名称
(7R,8R,9S)-7,8-dihydroxy-7,9-dimethyl-3-propan-2-yl-8H-pyrimido[2,1-f]purine-9-carboxylic acid
英文别名
——
(7R,8R,9S)-7,8-dihydroxy-7,9-dimethyl-3-propan-2-yl-8H-pyrimido[2,1-f]purine-9-carboxylic acid化学式
CAS
——
化学式
C14H19N5O4
mdl
——
分子量
321.336
InChiKey
NKCMUGLWQMBLSA-KWCYVHTRSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -0.4
  • 重原子数:
    23
  • 可旋转键数:
    2
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.57
  • 拓扑面积:
    124
  • 氢给体数:
    3
  • 氢受体数:
    7

反应信息

  • 作为产物:
    描述:
    参考文献:
    名称:
    A new 9-alkyladenine-cyclic methylglyoxal diadduct activates wt- and F508del-cystic fibrosis transmembrane conductance regulator (CFTR) in vitro and in vivo
    摘要:
    Cystic fibrosis transmembrane conductance regulator (CFTR) is the main chloride channel present in the apical membrane of epithelial cells and the F508 deletion (F508del-CFTR) in the CF gene is the most common cystic fibrosis-causing mutation. In the search for a pharmacotherapy of cystic fibrosis caused by the F508del-CFTR, a bi-therapy could be developed associating a corrector of F508del-CFTR trafficking and an activator of the channel activity of CFTR. Here, we report on the synthesis of 9-alkyladenine derivatives analogues of our previously discovered activator of wt-CFTR and F508del-CFTR, GPact-11a, and the identification of a new activator of these channels, GPact-26a, through various flux assays on human airway epithelial CF and non-CF cell lines and in vivo measurement of rat salivary secretion. This study reveals that the possible modifications of the side chain introduced at the N9 position of the main pharmacophore are highly limited since only an allyl group can replace the propyl side chain present in GPact-11a to lead to a strong activation of wt-CFTR in CHO cells. Docking simulations of the synthesised compounds and of four described modulators performed using a 3D model of the wt-type CFTR protein suggest five possible binding sites located at the interface of the nucleotide binding domains NBD1/NBD2. However, the docking study did not allow the differentiation between active and non-active compounds.
    DOI:
    10.1016/j.ejmech.2014.06.028
点击查看最新优质反应信息

文献信息

  • A new 9-alkyladenine-cyclic methylglyoxal diadduct activates wt- and F508del-cystic fibrosis transmembrane conductance regulator (CFTR) in vitro and in vivo
    作者:Benjamin Boucherle、Johanna Bertrand、Bruno Maurin、Brice-Loïc Renard、Antoine Fortuné、Brice Tremblier、Frédéric Becq、Caroline Norez、Jean-Luc Décout
    DOI:10.1016/j.ejmech.2014.06.028
    日期:2014.8
    Cystic fibrosis transmembrane conductance regulator (CFTR) is the main chloride channel present in the apical membrane of epithelial cells and the F508 deletion (F508del-CFTR) in the CF gene is the most common cystic fibrosis-causing mutation. In the search for a pharmacotherapy of cystic fibrosis caused by the F508del-CFTR, a bi-therapy could be developed associating a corrector of F508del-CFTR trafficking and an activator of the channel activity of CFTR. Here, we report on the synthesis of 9-alkyladenine derivatives analogues of our previously discovered activator of wt-CFTR and F508del-CFTR, GPact-11a, and the identification of a new activator of these channels, GPact-26a, through various flux assays on human airway epithelial CF and non-CF cell lines and in vivo measurement of rat salivary secretion. This study reveals that the possible modifications of the side chain introduced at the N9 position of the main pharmacophore are highly limited since only an allyl group can replace the propyl side chain present in GPact-11a to lead to a strong activation of wt-CFTR in CHO cells. Docking simulations of the synthesised compounds and of four described modulators performed using a 3D model of the wt-type CFTR protein suggest five possible binding sites located at the interface of the nucleotide binding domains NBD1/NBD2. However, the docking study did not allow the differentiation between active and non-active compounds.
查看更多