摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

O-乙酰基-L-高丝氨酸 | 7540-67-2

中文名称
O-乙酰基-L-高丝氨酸
中文别名
O-乙酰-L-丝氨酸盐酸盐;O-乙酰氧基-L-高丝氨酸
英文名称
O-acetyl-L-homoserine
英文别名
O-acetyl homoserine;(2S)-4-acetoxy-2-ammoniobutanoate;(2S)-4-acetyloxy-2-azaniumylbutanoate
O-乙酰基-L-高丝氨酸化学式
CAS
7540-67-2
化学式
C6H11NO4
mdl
——
分子量
161.158
InChiKey
FCXZBWSIAGGPCB-YFKPBYRVSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    134-136°C
  • 沸点:
    327.7±37.0 °C(Predicted)
  • 密度:
    1.242±0.06 g/cm3(Predicted)
  • 溶解度:
    甲醇(微溶)、水(微溶)
  • 稳定性/保质期:
    如果按照规格使用和储存,则不会分解。

计算性质

  • 辛醇/水分配系数(LogP):
    -3.8
  • 重原子数:
    11
  • 可旋转键数:
    5
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.67
  • 拓扑面积:
    89.6
  • 氢给体数:
    2
  • 氢受体数:
    5

安全信息

  • 海关编码:
    2922509090
  • 储存条件:
    密封于阴凉干燥环境中。

SDS

SDS:2f4949599276c2909febb9fe933f0ab1
查看

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    O-乙酰基-L-高丝氨酸 在 O-acetylhomoserine sulfhydrylase 、 硫化氢 作用下, 生成 L-高半胱氨酸
    参考文献:
    名称:
    O-乙酰高丝氨酸巯基化酶的鉴定,一种在艰难梭菌中负责蛋氨酸生物合成的假定酶:基因克隆和生化表征
    摘要:
    O-乙酰高丝氨酸巯基化酶 (OAHS) 是一种参与微生物蛋氨酸生物合成的吡哆醛 5'-磷酸依赖性酶。在这项研究中,我们报告了来自艰难梭菌的 OAHS 的基因克隆、蛋白质纯化和一些生化特征。该酶是分子量为 185 kDa 的四聚体。它在 L-同型半胱氨酸合成反应中具有高活性,可与其他来源的 OAHS 的报道活性相媲美。OAHS 活性受到代谢终产物 L-甲硫氨酸的抑制。L-Propargylglycine 被发现是该酶的自杀抑制剂。底物类似物 Nγ-乙酰基-L-2,4-二氨基丁酸是 OAHS 的竞争性抑制剂,Ki = 0.04 mM。艰难梭菌基因组分析表明该细菌使用直接巯基化的方式合成 L-甲硫氨酸。
    DOI:
    10.1002/iub.2139
  • 作为产物:
    描述:
    参考文献:
    名称:
    IMPROVED PROCESS FOR SYNTHESIZING FUNCTIONALIZED MERCAPTANS
    摘要:
    The present invention relates to a process for synthesizing functionalized mercaptans essentially in the absence of oxygen, and also to a composition making it possible in particular to implement this process. Said functionalized mercaptans are of the following formula (I): in which, R 1 and R 7 , which are identical or different, are a hydrogen atom or an aromatic or nonaromatic, linear, branched or cyclic, saturated or unsaturated, hydrocarbon chain of 1 to 20 carbon atoms which may comprise one or more heteroatoms; X is chosen from -C(=O)-, -CH 2 - or -CN; R 2 is: (i) either absent when X represents -CN, (ii) or a hydrogen atom, (iii) or -OR 3 , R 3 being a hydrogen atom or an aromatic or nonaromatic, linear, branched or cyclic, saturated or unsaturated, hydrocarbon chain of 1 to 20 carbon atoms which may comprise one or more heteroatoms, (iv) or -NR 4 R 5 , R 4 and R 5 , which are identical or different, being a hydrogen atom or an aromatic or nonaromatic, linear, branched or cyclic, saturated or unsaturated, hydrocarbon chain of 1 to 20 carbon atoms which may comprise one or more heteroatoms; n is equal to 1 or 2; and * represents an asymmetric carbon.
    公开号:
    US20230295080A1
点击查看最新优质反应信息

文献信息

  • Biosynthesis of Mycotoxin Fusaric Acid and Application of a PLP-Dependent Enzyme for Chemoenzymatic Synthesis of Substituted <scp>l</scp>-Pipecolic Acids
    作者:Yang Hai、Mengbin Chen、Arthur Huang、Yi Tang
    DOI:10.1021/jacs.0c09352
    日期:2020.11.18
    synthesizing the picolinic acid scaffold. FA biosynthesis also involves an off-line collaboration between a highly reducing polyketide synthase (HRPKS, Fub1) and a nonribosomal peptide synthetase (NRPS)-like carboxylic acid reductase (Fub8) in making an aliphatic α,β-unsaturated aldehyde. By harnessing the stereoselective C-C bond-forming activity of Fub7, we established a chemoenzymatic route for stereoconvergent
    Fusaric acid (FA) 是一种众所周知的真菌毒素,在植物病理学中起重要作用。FA 的生物合成基因簇已被鉴定,但生物合成途径仍未阐明。在这里,我们阐明了 FA 的生物合成,其特征是在合成吡啶甲酸支架。FA 生物合成还涉及高度还原性聚酮化合物合酶 (HRPKS, Fub1) 和非核糖体肽合成酶 (NRPS) 样羧酸还原酶 (Fub8) 之间的离线协作,以制备脂肪族 α,β-不饱和醛。通过利用 Fub7 的立体选择性 CC 键形成活性,
  • Method for Producing Bio-Based Homoserine Lactone and Bio-Based Organic Acid from O-Acyl Homoserine Produced by Microorganisms
    申请人:CJ Cheiljedang Corporation
    公开号:US20140296466A1
    公开(公告)日:2014-10-02
    The present invention relates to a method of producing bio-based homoserine lactone and bio-based organic acid through hydrolysis of O-acyl homoserine produced by a microorganism in the presence of an acid catalyst. According to the present invention, O-acyl homoserine produced by a microorganism is used as a raw material for producing 1,4-butanediol, gamma-butyrolactone, tetrahydrofuran and the like, which are industrially highly useful. The O-acyl homoserine produced by a microorganism can substitute conventional petrochemical products, can solve environmental concerns, including the emission of pollutants and the exhaustion of natural resources, and can be continuously renewable so as not to exhaust natural resources.
    本发明涉及一种通过在酸催化剂存在下水解微生物产生的O-酰基同型半胱氨酸,生产基于生物的同型半胱氨酸内酯和基于生物的有机酸的方法。根据本发明,利用微生物产生的O-酰基同型半胱氨酸作为原料,生产1,4-丁二醇、γ-丁内酯、四氢呋喃等工业上非常有用的产品。微生物产生的O-酰基同型半胱氨酸可以替代传统的石化产品,可以解决环境问题,包括污染物排放和自然资源枯竭,并且可以持续可再生,不会耗尽自然资源。
  • Coupling Bioorthogonal Chemistries with Artificial Metabolism: Intracellular Biosynthesis of Azidohomoalanine and Its Incorporation into Recombinant Proteins
    作者:Ying Ma、Hernán Biava、Roberto Contestabile、Nediljko Budisa、Martino di Salvo
    DOI:10.3390/molecules19011004
    日期:——
    methodology based on genetic engineering of metabolic pathways for direct intracellular production of non-canonical amino acids from simple precursors, coupled with expanded genetic code. In particular, we engineered the intracellular biosynthesis of L-azidohomoalanine from O-acetyl-L-homoserine and NaN3, and achieved its direct incorporation into recombinant target proteins by AUG codon reassignment in
    在本文中,我们提出了一种基于代谢途径基因工程的新型“单一实验”方法,用于从简单前体直接在细胞内生产非规范氨基酸,并结合扩展的遗传密码。特别是,我们设计了从 O-乙酰基-L-高丝氨酸和 NaN3 细胞内生物合成 L-叠氮基高丙氨酸,并通过 AUG 密码子重新分配在甲硫氨酸-营养缺陷型大肠杆菌菌株中将其直接掺入重组靶蛋白中。在我们的系统中,宿主的蛋氨酸生物合成途径首先通过利用来自谷氨酸棒杆菌的重组磷酸吡哆醛依赖性 O-乙酰高丝氨酸巯基化酶的广泛反应特异性转向生产所需的非规范氨基酸。然后,完成了目标蛋白 barstar 的表达,并伴随着有效的 L-叠氮高丙氨酸掺入代替 L-甲硫氨酸。这项工作是原理验证,并为直接从常见的可发酵来源进行生物技术相关的非规范氨基酸的细胞内生产和位点特异性掺入的额外工作铺平了道路。
  • Reactions of <i>O</i>-Substituted <scp>L</scp>-Homoserines Catalyzed by <scp>L</scp>-Methionine γ-Lyase and Their Mechanism
    作者:Nobuyoshi Esaki、Torn Nakayama、Seiji Sawada、Hidehiko Tanaka、Kenji Soda
    DOI:10.1080/00021369.1984.10866438
    日期:1984.8.1
    L-Methionine γ-lyase (EC 4.4.1.11) catalyzes α,γ-elimination of O-substituted L-homoserines (i.e., ROCH2CH2CH(NH2)COOH; R = acetyl, succinyl, or ethyl) to produce α-ketobutyrate, ammonia, and the corresponding carboxylate or alcohol, and also their γ-replacement reactions with various thiols to produce the corresponding S-substituted L-homocysteines. The reactivities of O-substituted L-homoserines in α,γ-elimination relative to that of L-methionine were as follows: O-acetyl, 140%; O-succinyl, 17%; and O-ethyl-L-homoserine, 99%. However, the enzyme does not catalyze the synthesis of O-substituted L-homoserines from alcohol or carboxylic acids in a γ-replacement reaction. We have analyzed the α,γ-elimination of O-acetyl-L-homoserine in deuterium oxide by 1H-NMR. The [β-2H, γ-2H]-species of α-ketobutyrate was exclusively formed from O-acetyl-L-homoserine. The enzyme catalyzes deamination of L-vinylglycine to give the identically labeled α-ketobutyrate species. Incubation of the enzyme with O-acetyl-L-homoserine resulted in the appearance of a new absorption band at 480 nm, which was observed also with L-vinylglycine. These results strongly suggest that the α,γ-elimination and γ-replacement reactions of O-acetyl-L-homoserine proceed through the stabilized α-carbanion of a Schiff base between pyridoxal 5'-phosphate and vinylglycine, which has been suggested as the key intermediate of L-methionine γ-lyase-caralyzed reactions of S-substituted L-homocysteines [N. Esaki, T. Suzuki, H. Tanaka, K. Soda and R. R. Rando, FEBS Lett., 84, 309 (1977).
    L-Methionine γ-裂解酶(EC 4.4.1.11)催化 O-取代的 L-高丝氨酸(即:ROCH2CH2CH(NH2)COOH;R = 乙酰基或乙基)的 α,γ-消除、ROCH2CH2CH(NH2)COOH;R = 乙酰基、琥珀酰基或乙基),生成 α-酮丁酸酯、氨和相应的羧酸酯或醇,以及它们与各种硫醇的 γ-置换反应,生成相应的 S-取代的 L-高半胱氨酸。与 L-蛋氨酸相比,O-取代的 L-高丝氨酸在 α,γ-消除反应中的反应活性如下:O-乙酰基为 140%;O-琥珀酰为 17%;O-乙基-L-高丝氨酸为 99%。然而,该酶不能催化以醇或羧酸为原料的 O-取代型 L-高丝氨酸的γ-置换反应。我们通过 1H-NMR 分析了 O-乙酰基-L-高丝氨酸在氧化氘中的α,γ-消除反应。α-酮丁酸的[β-2H, γ-2H]种类完全由 O-乙酰基-L-高丝氨酸形成。该酶催化 L-乙烯基甘氨酸的脱氨反应,从而产生标记相同的 α-酮丁酸。将该酶与 O-乙酰基-L-高丝氨酸混合后,在 480 纳米波长处出现了一条新的吸收带,在与 L-乙烯基甘氨酸混合时也观察到了这一现象。这些结果有力地表明,O-乙酰基-L-高丝氨酸的 α、γ-消除和 γ-置换反应是通过 5'- 磷酸吡哆醛和乙烯基甘氨酸之间的希夫碱的稳定化 α-碳酰基进行的。Esaki、T. Suzuki、H. Tanaka、K. Soda 和 R. R. Rando,FEBS Lett.,84,309(1977 年)。
  • Use of dimethyl disulfide for methionine production in microoragnisms
    申请人:Zelder Oskar
    公开号:US20090281353A1
    公开(公告)日:2009-11-12
    The present invention features improved processes and organisms for the production of methionine. The invention demonstrates that a ΔmetF organism or a ΔmetE AmetH organism, for example, mutants of C. glutamicum or E. coli , can use a methyl capped sulfide source, e.g., dimethyl disulfide (DMDS), as a source of both sulfur and a methyl group, bypassing the need for MetH/MetE and MetF activity and the need to reduce sulfate, for the synthesis of methionine. Also described in this patent are data implicating MetY (also called MetZ) as an enzyme that incorporates a methyl capped sulfide source, e.g., DMDS, into methionine. A ΔmetF ΔmetB strain of C. glutamicum can use a methyl capped sulfide source, e.g., DMDS, as a source of both sulfide and a methyl group. Furthermore, methionine production by engineered prototrophic organisms that overproduce O-acetyl-homoserine was improved by the addition of a methyl capped sulfide source, e.g., DMDS.
    本发明涉及改进的方法和生物体,用于甲硫氨酸的生产。该发明表明,例如C. glutamicum或E. coli的ΔmetF生物体或ΔmetE AmetH生物体,可以使用甲基硫醚源,例如二甲基二硫化物(DMDS),作为硫和甲基的来源,绕过对甲硫氨酸合成所需的MetH/MetE和MetF活性以及还原硫酸的需要。本专利还描述了数据,暗示MetY(也称为MetZ)是一种将甲基硫醚源,例如DMDS,嵌入到甲硫氨酸中的酶。C. glutamicum的ΔmetF ΔmetB菌株可以使用甲基硫醚源,例如DMDS,作为硫和甲基的来源。此外,通过添加甲基硫醚源,例如DMDS,改进了通过过度产生O-乙酰同型半胱氨酸的工程原核生物的甲硫氨酸产量。
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸 麦撒奎 鹅膏氨酸 鹅膏氨酸 鸦胆子酸A甲酯 鸦胆子酸A 鸟氨酸缩合物