CuI/Oxalic Diamide Catalyzed Coupling Reaction of (Hetero)Aryl Chlorides and Amines
作者:Wei Zhou、Mengyang Fan、Junli Yin、Yongwen Jiang、Dawei Ma
DOI:10.1021/jacs.5b08411
日期:2015.9.23
A class of oxalic diamides are found to be effective ligands for promoting CuI-catalyzed aryl amination with less reactive (hetero)aryl chlorides. The reaction proceeds at 120 °C with K3PO4 as the base in DMSO to afford a wide range of (hetero)aryl amines in good to excellent yields. The bis(N-aryl) substituted oxalamides are superior ligands to N-aryl-N'-alkyl substituted or bis(N-alkyl) substituted
发现一类草酸二酰胺是促进 CuI 催化的芳基胺化与反应性较低的(杂)芳基氯化物的有效配体。该反应在 120 °C 下以 K3PO4 作为碱在 DMSO 中进行,以良好到极好的收率提供范围广泛的(杂)芳基胺。双(N-芳基)取代的草酰胺是优于N-芳基-N'-烷基取代或双(N-烷基)取代的草酰胺的配体。配体中芳环的电子性质和空间性质对其效率都很重要。
Porous polymeric ligand promoted copper-catalyzed C-N coupling of (hetero)aryl chlorides under visible-light irradiation
A porous polymeric ligand (PPL) has been synthesized and complexed with copper to generate a heterogeneous catalyst (Cu@PPL) that has facilitated the efficient C-N coupling with various (hetero)aryl chlorides under mild conditions of visible-light irradiation at 80 °C (58 examples, up to 99% yields). This method could be applied to both aqueous ammonia and substituted amines, and is compatible to a
to be effective ligands for the Cu-catalyzedamination of less reactive (hetero)aryl chlorides. A wide range of functionalized (hetero)aryl chlorides reacted with various aliphatic amines to afford the desired products in good to excellent yields under the catalyst of CuI/2-aminopyridine 1-oxides. Furthermore, the catalyst system worked well for the coupling of cyclic secondary amines and N-methyl benzylamine
A room-temperature and PTC-free copper-catalyzed N-arylation of aliphatic amines in neatwater has been developed. Using a combination of CuI and 6,7-dihydroquinolin-8(5H)-one oxime as the catalyst and KOH as the base, a wide range of aliphatic amines are arylated with various aryl and heteroaryl halides to give the corresponding products in up to 95% yield.
The disclosure generally relates to compounds of formula I, including their salts, as well as compositions and methods of using the compounds. The compounds are ligands, antagonists of the NR2B receptor and may be useful for the treatment of various disorders of the central nervous system.