摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

三氟乙酸钕(III) | 29770-44-3

中文名称
三氟乙酸钕(III)
中文别名
——
英文名称
neodymium (III) trifluoro acetate
英文别名
neodymium(III) trifluoroacetate;neodymium triuoroacetate;trifluoro-acetic acid ; neodymium (III)-trifluoroacetate;Trifluor-essigsaeure; Neodym(III)-trifluoracetat
三氟乙酸钕(III)化学式
CAS
29770-44-3
化学式
3C2F3O2*Nd
mdl
——
分子量
483.288
InChiKey
FNJRBNHTKBGHEC-UHFFFAOYSA-M
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -0.7
  • 重原子数:
    8.0
  • 可旋转键数:
    0.0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.5
  • 拓扑面积:
    40.13
  • 氢给体数:
    0.0
  • 氢受体数:
    2.0

SDS

SDS:59ad792457067a043b2a2bae67dde0f1
查看

反应信息

  • 作为反应物:
    描述:
    potassium trifluoroacetate三氟乙酸钕(III) 在 oleic acid 、 oleylamine 、 1-octadecene 作用下, 以 neat (no solvent) 为溶剂, 生成
    参考文献:
    名称:
    衍生自三氟乙酸金属盐前体的旋光性均匀的钾和锂稀土氟化物纳米晶体。
    摘要:
    本文报道了具有不同形状(立方KLaF4和KCeF4蠕虫状纳米线,纳米立方体和纳米多面体;立方LiREF4(RE = Pr to Gd,Y)纳米多面体;通过在热油酸/油胺/ 1-中共同加热Li(CF3COO)或K(CF3COO)和RE(CF3COO)3共同热解四方LiREF4(RE = Tb对应Lu,Y)菱形纳米板)十八碳烯溶液。已经详细研究了溶剂组成,反应温度和时间对制备的纳米晶体的晶相纯度,形状和尺寸的影响。发现单分散纳米晶体的形成在很大程度上取决于从Li到K的碱金属以及从La到Lu和Y的稀土系列的性质。基于一系列的实验结果,还提出了一种受控增长机制。另外,评估了为设计的发光特性掺杂这些刚合成的主体纳米晶体的难易程度。例如,单分散和单晶掺杂Eu3 +的KGdF4,Yb3 +和Er3 +共掺杂的LiYF4纳米晶体重新分散在环己烷中,在紫外(UV)激发和近红外(NIR)980 nm激光激发下分别显示可见的室温红色和绿色发射。
    DOI:
    10.1039/b909145a
  • 作为产物:
    描述:
    neodymium(III) hydroxide 以 三氟乙酸 为溶剂, 生成 三氟乙酸钕(III)
    参考文献:
    名称:
    Solubilities of Salts in Trifluoroacetic Acid
    摘要:
    DOI:
    10.1021/ja01646a009
点击查看最新优质反应信息

文献信息

  • High Nd(III)-Sensitizer Concentrations for 800 nm Wavelength Excitation Using Isotropic Core–Shell Upconversion Nanoparticles
    作者:Carina Arboleda、Sha He、Alexandra Stubelius、Noah J. J. Johnson、Adah Almutairi
    DOI:10.1021/acs.chemmater.8b04057
    日期:2019.5.14
    Upconverting nanoparticles (UCNPs) are potentially useful for biological applications, if they are capable of high-intensity emission. This requires the highest absorption efficiencies of wavelengths not absorbed or scattered by tissues. 800 nm is considered to be a “biobenign” wavelength because it effectively minimizes signal attenuation and reduces detrimental overheating, while maintaining deep tissue penetration. Neodymium (Nd3+) substitution for ytterbium (Yb3+) in lanthanide-based UCNPs successfully shifts  absorption from 980 nm to 800 nm, where water does not show absorption. High Nd3+ concentrations are desired because the more the sensitizer ions, the higher the absorption and thus the upconversion (UC) emission. However, high Nd3+-sensitized UCNPs, above 30 mol % Nd3+, have been limited because of lattice distortions observed in heavily doped core–shell nanoparticles (CS NPs). Here, we overcome this hurdle by introducing a tensile-strained NaLuF4 shell while still ensuring a complete and thicker isotropic shell. We report 50 mol % Nd3+-sensitized CS NPs that effectively release lattice strain between the core and shell. The doping concentration of 50 mol % Nd3+ provided 13-fold UC enhancement compared to CS NPs without Nd3+ in the shell, independent of the activators examined in this study. This exceptional enhancement in UC emission is due to the maintenance of structural uniformity. We demonstrate cell tolerability by PEGylating CS NPs and incubating the NPs with several cell types to show the potential for biological applications.
    上转换纳米粒子(UCNPs)如果能够实现高强度发射,就有可能用于生物应用。这就要求对不被组织吸收或散射的波长具有最高的吸收效率。800 纳米被认为是 "生物无害 "波长,因为它能有效地减少信号衰减,降低有害的过热现象,同时保持深层组织穿透。在以为基础的 UCNP 中,(Nd3+)替代(Yb3+),成功地将吸收从 980 纳米转移到 800 纳米,而对该波长没有吸收。之所以需要高浓度的 Nd3+,是因为敏化剂离子越多,吸收率就越高,因此上转换(UC)发射也就越高。然而,由于在重度掺杂的核壳纳米粒子(CS NPs)中观察到的晶格畸变,30 mol % Nd3+ 以上的高 Nd3+ 敏化 UCNPs 一直受到限制。在这里,我们通过引入拉伸应变的 NaLuF4 壳来克服这一障碍,同时还确保了完整且较厚的各向同性壳。我们报告了 50 mol % Nd3+ 敏化 CS NPs,它能有效释放核心与外壳之间的晶格应变。与外壳不含 Nd3+ 的 CS NPs 相比,掺杂浓度为 50 摩尔% 的 Nd3+ 可使 UC 增强 13 倍,这与本研究中考察的活化剂无关。这种超常的 UC 发射增强是由于保持了结构的一致性。我们通过 PEG 化 CS NPs 并将其与多种类型的细胞培养,证明了细胞的耐受性,从而展示了其在生物应用方面的潜力。
  • High-Quality Sodium Rare-Earth Fluoride Nanocrystals:  Controlled Synthesis and Optical Properties
    作者:Hao-Xin Mai、Ya-Wen Zhang、Rui Si、Zheng-Guang Yan、Ling-dong Sun、Li-Ping You、Chun-Hua Yan
    DOI:10.1021/ja060212h
    日期:2006.5.1
    We report a general synthesis of high-quality cubic (alpha-phase) and hexagonal (beta-phase) NaREF4 (RE: Pr to Lu, Y) nanocrystals (nanopolyhedra, nanorods, nanoplates, and nanospheres) and NaYF(4):Yb,Er/Tm nanocrystals (nanopolyhedra and nanoplates) via the co-thermolysis of Na(CF3COO) and RE(CF3COO)3 in oleic acid/oleylamine/1-octadecene. By tuning the ratio of Na/RE, solvent composition, reaction
    我们报告了高质量立方(α 相)和六方(β 相)NaREF4(RE:Pr 到 Lu,Y)纳米晶体(纳米多面体、纳米棒、纳米板和纳米球)和 NaYF(4):Yb 的一般合成, Er/Tm 纳米晶体(纳米多面体和纳米片)通过 Na(CF3COO) 和 RE(CF3COO)3 在油酸/油胺/1-十八碳烯中的共热分解。通过调整 Na/RE 的比例、溶剂组成、反应温度和时间,我们可以控制纳米晶体的相、形状和尺寸。根据其α->β相变行为,沿稀土系列,NaREF4可分为三组(I:Pr和Nd;II:Sm到Tb;III:Dy到Lu,Y)。整个可控合成机制可以从自由能的角度来解释。
  • Water dispersible ligand-free rare earth fluoride nanoparticles: water transfer <i>versus</i> NaREF<sub>4</sub>-to-REF<sub>3</sub> phase transformation
    作者:Nan Liu、Nicholas Gobeil、Parrish Evers、Isabel Gessner、Emille M. Rodrigues、Eva Hemmer
    DOI:10.1039/d0dt01080d
    日期:——
    The chemical stability of oleate-capped sub-10 nm α- and β-NaREF4 NPs (RE = Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu for α- and RE = Pr, Nd, Sm, Eu, Gd, Tb, Dy for β-phase NPs) was evaluated under the acidic conditions used for ligand removal towards water dispersibility. It was found that for such small NPs, a pH lower than 3 was necessary for the water transfer to be efficient and to yield well-dispersed
    油酸酯封端的10 nm以下α-和β-NaREF4NPs的化学稳定性(RE = Y,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Yb,Lu对于α-和RE = β-相NPs的Pr,Nd,Sm,Eu,Gd,Tb,Dy在酸性条件下进行评估,该酸性条件用于去除配体以实现分散性。已经发现,对于如此小的NP,为了使转移有效并且产生良好分散的无配体的NP,pH必须低于3。与通常认为的NaREF4的良好化学稳定性形成鲜明对比的是,观察到这些条件可能会导致NaREF4 NP相转变为更大的六方或正交相REF3的风险,具体取决于NP的组成。发现α/β-NaREF4和六方/斜方REF3相的热力学稳定性(由RE离子选择决定)与NPs的化学稳定性之间存在相关性。例如,β-NaGdF4NPs保持稳定,而α-NaGdF4NPs相转变成六方GdF3。更一般而言,基于较轻RE离子的NaREF4 NP更倾向于相变,而基于较重RE离子的NaREF4
  • Bimodal imaging using neodymium doped gadolinium fluoride nanocrystals with near-infrared to near-infrared downconversion luminescence and magnetic resonance properties
    作者:L. Christopher Mimun、Gangadharan Ajithkumar、Madhab Pokhrel、Brian G. Yust、Zak G. Elliott、Francisco Pedraza、Ashish Dhanale、Liang Tang、Ai-Ling Lin、Vinayak P. Dravid、Dhiraj K. Sardar
    DOI:10.1039/c3tb20905a
    日期:——
    Here we report the synthesis, characterization and application of a multifunctional surface functionalized GdF3:Nd3+ nanophosphor that exhibits efficient near infrared (NIR) fluorescence as well as magnetic properties, which can be utilized for bimodal imaging in medical applications. The nanoparticles are small with an average size of 5 nm and form stable colloids that last for several weeks without settling, enabling the use for several biomedical and photonic applications. Their excellent NIR properties, such as nearly 11% quantum yield of the 1064 nm emission, make them ideal contrast agents and biomarkers for in vitro and in vivo NIR optical bioimaging. The nanophosphors which were coated with poly(maleic anhydride-alt-1-octadicene) (PMAO) were implemented in cellular imaging, showing no significant cellular toxicity for concentrations up to 200 μg ml−1. Furthermore, the incorporation of Gd into the nanocrystalline structure renders them with exceptional magnetic properties, making them ideal for use as magnetic resonance imaging (MRI) contrast agents. The utility of these NIR emitting nanoparticles in infrared bioimaging and as contrast agents in magnetic resonance imaging was demonstrated by confocal imaging, magnetic resonance and tissue experiments.
    本文报道了一种多功能表面功能化GdF3:Nd3+纳米荧光粉的合成、表征和应用,该荧光粉具有高效的近红外(NIR)荧光和磁性,可用于医学应用中的双模成像。纳米粒子平均直径为5 nm,形成稳定的胶体,可维持数周而不沉淀,可用于多种生物医学和光子学应用。它们具有优异的近红外特性,如1064 nm发射的量子产率接近11%,使其成为体外和体内近红外光学生物成像的理想造影剂和生物标记物。在细胞成像中,用聚(马来酸酐-alt-1-辛二烯)(PMAO)包覆的纳米荧光粉在浓度高达200 μg ml-1时没有明显的细胞毒性。此外,将掺入纳米晶结构使其具有优异的磁性,使其成为磁共振成像(MRI)造影剂的理想选择。共聚焦成像、磁共振和组织实验证明了这些近红外发射纳米粒子在红外生物成像和磁共振成像中作为造影剂的用途。
  • Gmelin Handbuch der Anorganischen Chemie, Gmelin Handbook: Sc: MVol.C2, 3.2.2.2.6.3, page 55 - 56
    作者:
    DOI:——
    日期:——
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[[[(1R,2R)-2-[[[3,5-双(叔丁基)-2-羟基苯基]亚甲基]氨基]环己基]硫脲基]-N-苄基-N,3,3-三甲基丁酰胺 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,4R)-Boc-4-环己基-吡咯烷-2-羧酸 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-N,3,3-三甲基-N-(苯甲基)丁酰胺 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S)-2-氨基-3,3-二甲基-N-2-吡啶基丁酰胺 (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,5R,6R)-5-(1-乙基丙氧基)-7-氧杂双环[4.1.0]庚-3-烯-3-羧酸乙基酯 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素(1-6) 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸