Reductive amination of various ketones and aldehydes by transferhydrogenation under aqueous conditions has been developed, by using cyclometallated iridium complexes as catalysts and formate as hydrogen source. The pH value of the solution is shown to be critical for a high catalytic chemoselectivity and activity, with the best pH value being 4.8. In comparison with that in organic solvents, the reductive
Levulinic acid (LA) is transformed into pyrrolidinones via iridium-catalysed reductive amination using formic acid as the hydrogen source under aqueous conditions. The catalytic system is the most active and performs under the mildest conditions ever reported for the reductive amination of LA.
Palladium-Catalyzed Aerobic Oxidative Cyclization of <i>N</i>-Aryl Imines: Indole Synthesis from Anilines and Ketones
作者:Ye Wei、Indubhusan Deb、Naohiko Yoshikai
DOI:10.1021/ja3030824
日期:2012.6.6
We report here an operationally simple, palladium-catalyzed cyclization reaction of N-aryl imines, affording indoles via the oxidative linkage of two C-H bonds under mild conditions using molecular oxygen as the sole oxidant. The process allows quick and atom-economical assembly of indole rings from inexpensive and readily available anilines and ketones and tolerates a broad range of functional groups
An efficient catalytic system for the alkylation of amines with either alcohols or amines undermildconditions has been developed, using cyclometallated iridium complexes as catalysts. The method has broad substrate scope, allowing for the synthesis of a diverse range of secondary and tertiary amines with good to excellent yields. By controlling the ratio of substrates, both mono‐ and bis‐alkylated
The chiral phosphoric acid catalyzed enantioselective transferhydrogenation of various ketimines was achieved by the use of 2-aryl indoline as the hydrogen donor. Corresponding chiral amines were obtained in good chemical yields with excellent enantioselectivities.