Design, Synthesis and Antimicrobial Evaluation of Novel Benzimidazoleincorporated
Naphthalimide Derivatives as Salmonella typhimurium DNA
Intercalators, and Combination Researches
Compounds of structure
in which Y is -CH2NH2 or SR; R is hydrogen or C1-4 alkyl; n is 0 to 5; and R2 to R6 are the same or different and are each hydrogen, halogen, hydroxy, C1-4 alkyl, CN, N02, SO2NH2, CO2H, CONH2, CHO, CH2OH, CF3, C1-4 alkoxy, SO2C1-4 fluoroalkyl or CO2C1-4 alkyl; processes for their preparation, pharmaceutical compositions containing them and their use in therapy, for example, as anti-hypertensive agents.
A series of novel benzimidazole quinolones as potential antimicrobial agents were designed and synthesized. Most of the prepared compounds exhibited good or even stronger antimicrobial activities in comparison with reference drugs. The most potent compound 15m was membrane active and did not trigger the development of resistance in bacteria. It not only inhibited the formation of biofilms but also disrupted the established Staphylococcus aureus and Escherichia coli biofilms. It was able to inhibit the relaxation activity of E. coli topoisomerase IV at 10 mu M concentration. Moreover, this compound also showed low toxicity against mammalian cells. Molecular modeling and experimental investigation of compound 15m with DNA suggested that this compound could effectively bind with DNA to form a steady 15m-DNA complex which might further block DNA replication to exert the powerful bioactivities. (C) 2016 Elsevier Masson SAS. All rights reserved.