The present invention provide a compound having an orexin receptor antagonistic activity, which is expected to be useful as medicaments such as agents for the prophylaxis or treatment of sleep disorder, depression, anxiety disorder, panic disorder, schizophrenia, drug dependence, Alzheimer's disease and the like.
The present invention relates to a compound represented by the formula (I):
wherein each symbol is as defined in the specification, or a salt thereof.
The present invention provide a compound having an orexin receptor antagonistic activity, which is expected to be useful as medicaments such as agents for the prophylaxis or treatment of sleep disorder, depression, anxiety disorder, panic disorder, schizophrenia, drug dependence, Alzheimer's disease and the like.
The present invention relates to a compound represented by the formula (I):
wherein each symbol is as defined in the specification, or a salt thereof.
The present invention provide a compound having an orexin receptor antagonistic activity, which is expected to be useful as medicaments such as agents for the prophylaxis or treatment of sleep disorder, depression, anxiety disorder, panic disorder, schizophrenia, drug dependence, Alzheimer's disease and the like.
The present invention relates to a compound represented by the formula (I):
wherein each symbol is as defined in the specification, or a salt thereof.
Valosine-containing protein (VCP), also known as p97 or cdc48 in yeast, is a highly abundant protein belonging to the AAA ATPase family involved in a number of essential cellular functions, including ubiquitin-proteasome mediated protein degradation, Golgi reassembly, transcription activation, and cell cycle control. Altered expression of VCP has been detected in many cancer types sometimes associated with poor prognosis. Furthermore, VCP mutations are causative of some neurodegenerative disorders. In this paper we report the discovery, synthesis, and structure-activity relationships of substituted 2-aminopyrimidines, representing a new class of reversible VCP inhibitors. This class of compounds, identified in a HTS campaign against recombinant VCP, has been progressively expanded and manipulated to increase biochemical potency and gain cellular activity.
Novel artesunate–pyrimidine-based hybrids with anticancer potential against multidrug-resistant cancer cells
derivatives (13a–f and 14a–k), artemisinin, and artesunate, were tested on sensitive and multidrug-resistant (MDR) human non-small cell lung carcinoma (NSCLC) cells. All hybrid compounds with piperazine linker 16a–k were selective toward NSCLC cells and displayed IC50 values below 5 μM. Although they showed similar anticancer potency as artesunate, their selectivity againstcancer cells was considerably improved