摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

4-cyclohexyl-5-(pyridin-2-yl)-4H-1,2,4-triazole-3-thiol

中文名称
——
中文别名
——
英文名称
4-cyclohexyl-5-(pyridin-2-yl)-4H-1,2,4-triazole-3-thiol
英文别名
4-cyclohexyl-3-pyridin-2-yl-1H-1,2,4-triazole-5-thione
4-cyclohexyl-5-(pyridin-2-yl)-4H-1,2,4-triazole-3-thiol化学式
CAS
——
化学式
C13H16N4S
mdl
MFCD11543604
分子量
260.363
InChiKey
DFKYTLSQSXZICI-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.7
  • 重原子数:
    18
  • 可旋转键数:
    2
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.461
  • 拓扑面积:
    72.6
  • 氢给体数:
    1
  • 氢受体数:
    3

反应信息

  • 作为反应物:
    描述:
    1-(2-溴乙氧基)-4-氯苯4-cyclohexyl-5-(pyridin-2-yl)-4H-1,2,4-triazole-3-thiolN,N-二异丙基乙胺 作用下, 以 四氢呋喃 为溶剂, 反应 96.0h, 以85%的产率得到2-(5-(2-(4-chlorophenoxy)ethylthio)-4-cyclohexyl-4H-1,2,4-triazol-3-yl)pyridine
    参考文献:
    名称:
    Approaches to design non-covalent inhibitors for human granzyme B (hGrB)
    摘要:
    针对人类颗粒酶B的非共价小分子抑制剂进行了一项基于结构的设计活动,采用了一种虚拟筛选策略,结合三个约束条件和FTMAP探针位点映射,以识别配体“热点”。此外,随后利用ROCS基于形状的叠加方法探索了多样结构的新骨架,接着进行了Glide SP对接、诱导适合对接及QikProp分子性质分析。识别出来自商业可获取库的新型中等活性小分子拮抗剂(IC50值≥25 μM),并通过多步骤合成了三种新骨架。此外,我们提供了一个全面的结构基础药物发现方法的例子,用于非共价抑制剂,该方法依赖于共价结合配体的X射线结构,并指出设计路径可能会因替代和未知的结合姿势而受到影响。
    DOI:
    10.1039/c4ob01874e
  • 作为产物:
    描述:
    2-吡啶甲酸乙酯一水合肼 、 sodium hydroxide 作用下, 以 乙醇 为溶剂, 反应 5.0h, 生成 4-cyclohexyl-5-(pyridin-2-yl)-4H-1,2,4-triazole-3-thiol
    参考文献:
    名称:
    Synthesis and anti-endoplasmic reticulum stress activity of N-substituted-2-arylcarbonylhydrazinecarbothioamides
    摘要:
    Misfolded or unfolded proteins are accumulated in lumen of endoplasmic reticulum (ER) in ER stress condition. It has been implicated in many pathological conditions such as Alzheimer's disease, diabetic retinopathy, atherosclerosis, beta-cell apoptosis and lung inflammation. We found a series of N-substituted-2-arylcarbonylhydrazinecarbothioamides to potently decrease ER stress signal, showing up to almost 300-fold better activity than 1-hydroxynaphthoic acid and tauro-ursodesoxycholic acid, positive controls, respectively. Structure-activity relationship (SAR) study showed that 2-arylcarbonyl moiety is critical for the activity of the hydrazinecarbothioamide analogues and side chains tethering on thioamide moiety were relatively insensitive to the activity. Some analogues were found to consistently exert the potency under more physiologically relevant condition where ER stress was induced by palmitic acid. ER stress markers such as CHOP and phosphorylated eIF2 alpha and PERK were accordingly decreased in western blotting upon treatment of compound 4h. Potential ER stress inhibitory activity and novel structures could provide a novel platform for new chemical chaperone and therapy for protein misfolding diseases.
    DOI:
    10.1007/s00044-019-02442-1
点击查看最新优质反应信息

文献信息

  • Approaches to design non-covalent inhibitors for human granzyme B (hGrB)
    作者:Mi-Sun Kim、Lauriane A. Buisson、Dean A. Heathcote、Haipeng Hu、D. Christopher Braddock、Anthony G. M. Barrett、Philip G. Ashton-Rickardt、James P. Snyder
    DOI:10.1039/c4ob01874e
    日期:——
    A structure-based design campaign for non-covalent small molecule inhibitors of human granzyme B was carried out by means of a virtual screening strategy employing three constraints and probe site-mapping with FTMAP to identify ligand “hot spots”. In addition, new scaffolds of diverse structures were subsequently explored with ROCS shape-based superposition methods, following by Glide SP docking, induced fit docking and analysis of QikProp molecular properties. Novel classes of moderately active small molecule blockers (≥25 μM IC50 values) from commercially available libraries were identified, and three novel scaffolds have been synthesized by multi-step procedures. Furthermore, we provide an example of a comprehensive structure-based drug discovery approach to non-covalent inhibitors that relies on the X-ray structure of a covalently bound ligand and suggest that the design path may be compromised by alternative and unknown binding poses.
    针对人类颗粒酶B的非共价小分子抑制剂进行了一项基于结构的设计活动,采用了一种虚拟筛选策略,结合三个约束条件和FTMAP探针位点映射,以识别配体“热点”。此外,随后利用ROCS基于形状的叠加方法探索了多样结构的新骨架,接着进行了Glide SP对接、诱导适合对接及QikProp分子性质分析。识别出来自商业可获取库的新型中等活性小分子拮抗剂(IC50值≥25 μM),并通过多步骤合成了三种新骨架。此外,我们提供了一个全面的结构基础药物发现方法的例子,用于非共价抑制剂,该方法依赖于共价结合配体的X射线结构,并指出设计路径可能会因替代和未知的结合姿势而受到影响。
  • Synthesis and anti-endoplasmic reticulum stress activity of N-substituted-2-arylcarbonylhydrazinecarbothioamides
    作者:Hoon Choi、Wheesahng Yun、Jung-hun Lee、Seoul Jang、Sang Won Park、Dong Hwan Kim、Kyoung Pyo Seon、Jung-mi Hyun、Kwiwan Jeong、Jin-mo Ku、Tae-gyu Nam
    DOI:10.1007/s00044-019-02442-1
    日期:2019.12
    Misfolded or unfolded proteins are accumulated in lumen of endoplasmic reticulum (ER) in ER stress condition. It has been implicated in many pathological conditions such as Alzheimer's disease, diabetic retinopathy, atherosclerosis, beta-cell apoptosis and lung inflammation. We found a series of N-substituted-2-arylcarbonylhydrazinecarbothioamides to potently decrease ER stress signal, showing up to almost 300-fold better activity than 1-hydroxynaphthoic acid and tauro-ursodesoxycholic acid, positive controls, respectively. Structure-activity relationship (SAR) study showed that 2-arylcarbonyl moiety is critical for the activity of the hydrazinecarbothioamide analogues and side chains tethering on thioamide moiety were relatively insensitive to the activity. Some analogues were found to consistently exert the potency under more physiologically relevant condition where ER stress was induced by palmitic acid. ER stress markers such as CHOP and phosphorylated eIF2 alpha and PERK were accordingly decreased in western blotting upon treatment of compound 4h. Potential ER stress inhibitory activity and novel structures could provide a novel platform for new chemical chaperone and therapy for protein misfolding diseases.
查看更多

同类化合物

(S)-氨氯地平-d4 (R,S)-可替宁N-氧化物-甲基-d3 (R)-N'-亚硝基尼古丁 (5E)-5-[(2,5-二甲基-1-吡啶-3-基-吡咯-3-基)亚甲基]-2-亚磺酰基-1,3-噻唑烷-4-酮 (5-溴-3-吡啶基)[4-(1-吡咯烷基)-1-哌啶基]甲酮 (5-氨基-6-氰基-7-甲基[1,2]噻唑并[4,5-b]吡啶-3-甲酰胺) (2S)-2-[[[9-丙-2-基-6-[(4-吡啶-2-基苯基)甲基氨基]嘌呤-2-基]氨基]丁-1-醇 (2R,2''R)-(+)-[N,N''-双(2-吡啶基甲基)]-2,2''-联吡咯烷四盐酸盐 黄色素-37 麦斯明-D4 麦司明 麝香吡啶 鲁非罗尼 鲁卡他胺 高氯酸N-甲基甲基吡啶正离子 高氯酸,吡啶 高奎宁酸 马来酸溴苯那敏 马来酸左氨氯地平 顺式-双(异硫氰基)(2,2'-联吡啶基-4,4'-二羧基)(4,4'-二-壬基-2'-联吡啶基)钌(II) 顺式-二氯二(4-氯吡啶)铂 顺式-二(2,2'-联吡啶)二氯铬氯化物 顺式-1-(4-甲氧基苄基)-3-羟基-5-(3-吡啶)-2-吡咯烷酮 顺-双(2,2-二吡啶)二氯化钌(II) 水合物 顺-双(2,2'-二吡啶基)二氯化钌(II)二水合物 顺-二氯二(吡啶)铂(II) 顺-二(2,2'-联吡啶)二氯化钌(II)二水合物 非那吡啶 非洛地平杂质C 非洛地平 非戈替尼 非尼拉朵 非尼拉敏 阿雷地平 阿瑞洛莫 阿培利司N-6 阿伐曲波帕杂质40 间硝苯地平 间-硝苯地平 锇二(2,2'-联吡啶)氯化物 链黑霉素 链黑菌素 银杏酮盐酸盐 铬二烟酸盐 铝三烟酸盐 铜-缩氨基硫脲络合物 铜(2+)乙酸酯吡啶(1:2:1) 铁5-甲氧基-6-甲基-1-氧代-2-吡啶酮 钾4-氨基-3,6-二氯-2-吡啶羧酸酯 钯,二氯双(3-氯吡啶-κN)-,(SP-4-1)-