2-[(Carboxymethyl)sulfanyl]-4-oxo-4-arylbutanoic Acids Selectively Suppressed Proliferation of Neoplastic Human HeLa Cells. A SAR/QSAR Study
摘要:
A series of twenty alkyl-, halo-, and methoxy-aryl-substituted 2-[(carboxymethyl)sulfanyl]-4-oxo-4-arylbutanoic acids were synthesized. The new compounds, called CSAB, suppressed proliferation of human cervix carcinoma, HeLa cells, in vitro in a concentration range of 0.644 to 29.48 mu M/L. Two compounds exhibit antiproliferative activity in sub-micromolar concentrations (16, 19). Five compounds act in low micromolar concentrations (< 2 mu M/L). The most active compounds exert lower cytotoxicity toward healthy human peripheral blood mononuclear cells (PBMC and PBMC+PHA) (selectivity indexes > 10). A strong structure-activity relationship, using estimated log P values and BCUT descriptors, was observed.
Antiproliferative activity of aroylacrylic acids. Structure-activity study based on molecular interaction fields
摘要:
Antiproliferative activity of 27 phenyl-substituted 4-aryl-4-oxo-2-butenoic acids (aroylacrylic acids) toward Human cervix carcinoma (HeLa). Human chronic myelogenous leukemia (K562) and Human colon tumor (LS174) cell lines in vitro are reported. Compounds are active toward all examined cell lines. The most active compounds bear two or three branched alkyl or cycloalkyl substituents on phenyl moiety having potencies in low micromolar ranges. One of most potent derivatives arrests the cell cycle at S phase in HeLa cells. The 3D QSAR study, using molecular interaction fields (MIF) and derived alignment independent descriptors (GRIND-2), rationalize the structural characteristics correlated with potency of compounds. Covalent chemistry, most possibly involved in the mode of action of reported compounds, was quantitatively accounted using frontier molecular orbitals. Pharmacophoric pattern of most potent compounds are used as a template for virtual screening, to find similar ones in database of compounds screened against DTP-NCI 60 tumor cell lines. Potency of obtained hits is well predicted. (C) 2011 Elsevier Masson SAS. All rights reserved.
Cramer et al., Journal of the American Pharmaceutical Association (1912), 1948, vol. 37, p. 439,445
作者:Cramer et al.
DOI:——
日期:——
2-[(Carboxymethyl)sulfanyl]-4-oxo-4-arylbutanoic Acids Selectively Suppressed Proliferation of Neoplastic Human HeLa Cells. A SAR/QSAR Study
作者:Branko J. Drakulić、Zorica D. Juranić、Tatjana P. Stanojković、Ivan O. Juranić
DOI:10.1021/jm0502889
日期:2005.8.1
A series of twenty alkyl-, halo-, and methoxy-aryl-substituted 2-[(carboxymethyl)sulfanyl]-4-oxo-4-arylbutanoic acids were synthesized. The new compounds, called CSAB, suppressed proliferation of human cervix carcinoma, HeLa cells, in vitro in a concentration range of 0.644 to 29.48 mu M/L. Two compounds exhibit antiproliferative activity in sub-micromolar concentrations (16, 19). Five compounds act in low micromolar concentrations (< 2 mu M/L). The most active compounds exert lower cytotoxicity toward healthy human peripheral blood mononuclear cells (PBMC and PBMC+PHA) (selectivity indexes > 10). A strong structure-activity relationship, using estimated log P values and BCUT descriptors, was observed.
Antiproliferative activity of aroylacrylic acids. Structure-activity study based on molecular interaction fields
作者:Branko J. Drakulić、Tatjana P. Stanojković、Željko S. Žižak、Milan M. Dabović
DOI:10.1016/j.ejmech.2011.04.043
日期:2011.8
Antiproliferative activity of 27 phenyl-substituted 4-aryl-4-oxo-2-butenoic acids (aroylacrylic acids) toward Human cervix carcinoma (HeLa). Human chronic myelogenous leukemia (K562) and Human colon tumor (LS174) cell lines in vitro are reported. Compounds are active toward all examined cell lines. The most active compounds bear two or three branched alkyl or cycloalkyl substituents on phenyl moiety having potencies in low micromolar ranges. One of most potent derivatives arrests the cell cycle at S phase in HeLa cells. The 3D QSAR study, using molecular interaction fields (MIF) and derived alignment independent descriptors (GRIND-2), rationalize the structural characteristics correlated with potency of compounds. Covalent chemistry, most possibly involved in the mode of action of reported compounds, was quantitatively accounted using frontier molecular orbitals. Pharmacophoric pattern of most potent compounds are used as a template for virtual screening, to find similar ones in database of compounds screened against DTP-NCI 60 tumor cell lines. Potency of obtained hits is well predicted. (C) 2011 Elsevier Masson SAS. All rights reserved.