摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2,2-bis(((2-((ethoxycarbonothioyl)thio)propanoyl)oxy)methyl)propane -1,3-diyl bis(2-((ethoxycarbonothioyl)thio)propanoate)

中文名称
——
中文别名
——
英文名称
2,2-bis(((2-((ethoxycarbonothioyl)thio)propanoyl)oxy)methyl)propane -1,3-diyl bis(2-((ethoxycarbonothioyl)thio)propanoate)
英文别名
2-(2-Ethoxycarbothioylsulfanylpropanoyloxy)ethyl 2-ethoxycarbothioylsulfanylpropanoate
2,2-bis(((2-((ethoxycarbonothioyl)thio)propanoyl)oxy)methyl)propane -1,3-diyl bis(2-((ethoxycarbonothioyl)thio)propanoate)化学式
CAS
——
化学式
C14H22O6S4
mdl
——
分子量
414.589
InChiKey
DZGJFEPRXVPVHB-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    4.5
  • 重原子数:
    24
  • 可旋转键数:
    15
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.71
  • 拓扑面积:
    186
  • 氢给体数:
    0
  • 氢受体数:
    10

反应信息

  • 作为产物:
    描述:
    potassium ethyl xanthogenate2-[(2-bromopropanoyl)oxy]ethyl 2-bromopropanoate丙酮 为溶剂, 反应 24.0h, 以55%的产率得到2,2-bis(((2-((ethoxycarbonothioyl)thio)propanoyl)oxy)methyl)propane -1,3-diyl bis(2-((ethoxycarbonothioyl)thio)propanoate)
    参考文献:
    名称:
    通过耐氧的光酶RAFT聚合,以多种结构实现非共轭单体的超高分子量。
    摘要:
    获得可定义的超高分子量(UHMW)聚合物是可逆失活自由基聚合领域的不懈追求。已经成功地开发了合成方案以仅从共轭单体获得具有低分散性的UHMW,而未共轭单体的聚合没有提供相同水平的控制。本文利用耐氧光酶R​​AFT(可逆加成-断裂链转移)聚合技术解决了10°C下非共轭单体的这一难题,从而能够以接近定量的转化率轻松合成定义明确,线性和星形的聚合物,这是前所未有的超高分子量和低分散性。对组成,MW和架构的控制非常精细,并且操作简便,条件温和,环境友好,
    DOI:
    10.1002/anie.202010722
点击查看最新优质反应信息

文献信息

  • Photoinduced <scp>RAFT Step‐Growth</scp> Polymerization toward Degradable Living Polymer Networks
    作者:Zhuang Li、Jiajia Li、Bowen Zhao、Xiaofeng Pan、Xiangqiang Pan、Jian Zhu
    DOI:10.1002/cjoc.202200620
    日期:2023.3
    application of reversible degenerative radical polymerization (RDRP) in the construction of polymer networks (PNs) provides a facile and convenient way to fabricate 3D objects with the ability to be posttransformed. However, the polymerization mechanism mainly relies on chain-growth polymerization, which limits its wide application for various polymeric materials with different functionalities. Here
    可逆退化自由基聚合 (RDRP) 在聚合物网络 (PN) 构建中的应用为制造具有后转换能力的 3D 物体提供了一种简便的方法。但其聚合机理主要依赖于链增长聚合,限制了其在各种不同功能高分子材料中的广泛应用。在这里,我们提出了一种利用光诱导 RAFT 逐步生长聚合来实现 PN 的方法,该聚合基于黄原酸酯和烷基乙烯基之间的 RAFT 单单元单体插入 (SUMI) 反应。受益于该反应,在聚合过程中主链的每个重复单元中都可以生成悬垂的 RAFT 试剂。这些可再激活的休眠物种可进一步用于通过多官能单体的逐步生长聚合制备的 PN 的后官能化。此外,由于酯基的引入,制备的 PNs 是可降解的,为可降解和刺激响应材料提供了途径。
  • Tuning the Mechanical Properties of 3D‐printed Objects by the RAFT Process: From Chain‐Growth to Step‐Growth
    作者:Xiaofeng Pan、Jiajia Li、Zhuang Li、Qing Li、Xiangqiang Pan、Zhengbiao Zhang、Jian Zhu
    DOI:10.1002/anie.202318564
    日期:2024.3.4
    Abstract

    Photoinduced 3D printing based on the reversible addition‐fragmentation chain transfer (RAFT) process has emerged as a robust method for creating diverse functional materials. However, achieving precise control over the mechanical properties of these printed objects remains a critical challenge for practical application. Here, we demonstrated a RAFT step‐growth polymerization of a bifunctional xanthate and bifunctional vinyl acetate. Additionally, we demonstrated photoinduced 3D printing through RAFT step‐growth polymerization with a tetrafunctional xanthate and a bifunctional vinyl acetate. By adjusting the molar ratio of the components in the printing resins, we finely tuned the polymerization mechanism from step‐growth to chain‐growth. This adjustment resulted in a remarkable range of tunable Young's moduli, ranging from 7.6 MPa to 997.1 MPa. Moreover, post‐functionalization and polymer welding of the printed objects with varying mechanical properties opens up a promising way to produce tailor‐made materials with specific and tunable properties.

    摘要基于可逆加成-碎片链转移(RAFT)工艺的光诱导三维打印技术已成为制造各种功能材料的可靠方法。然而,实现对这些打印对象机械性能的精确控制仍然是实际应用中的一个关键挑战。在这里,我们展示了双官能黄原酸酯和双官能醋酸乙烯酯的 RAFT 梯级生长聚合。此外,我们还利用四官能黄原酸酯和双官能乙酸乙烯酯通过 RAFT 梯级生长聚合反应演示了光诱导 3D 打印。通过调整打印树脂中各组分的摩尔比,我们对聚合机制进行了微调,从阶跃生长转变为链式生长。调整后,杨氏模量的可调范围非常大,从 7.6 兆帕到 997.1 兆帕不等。此外,对具有不同机械性能的打印物体进行后功能化和聚合物焊接,为生产具有特定可调性能的定制材料开辟了一条前景广阔的途径。
  • BIOMEDICAL DEVICES, POLYMERIC MATERIALS AND CONTACT LENSES COMPRISING SAME.
    申请人:Bausch & Lomb Incorporated
    公开号:EP2443484B1
    公开(公告)日:2015-12-16
  • METHOD FOR THE CONTROLLED RADICAL POLYMERISATION OF ACRYLIC ACID AND THE SALTS THEREOF, POLYMERS THUS OBTAINED AND APPLICATIONS THEREOF
    申请人:SUAU Jean-Marc
    公开号:US20070106042A1
    公开(公告)日:2007-05-10
    The present invention concerns a process for controlled radical polymerisation of acrylic acid and its salts in a reactive medium constituted solely of water The invention also concerns homopolymers and copolymers of acrylic acid obtained by the polymerisation process. Finally, the invention concerns the use of the said homopolymers and copolymers of acrylic acid in fields of industry such as the paper field and in particular the coating of paper and the mass-filling of paper, the oil field, or the fields of paint, water treatment, detergency, ceramics, cements or hydraulic binders, public works, inks and varnishes, sizing of textiles or the finishing of leather.
  • POLY(VINYL ESTER) BLOCK COPOLYMERS
    申请人:Mahanthappa Mahesh Kalyana
    公开号:US20110224377A1
    公开(公告)日:2011-09-15
    Poly(vinyl ester) block copolymers comprising blocks of two or more different vinyl ester repeating units. The vinyl ester repeating units may be wherein R is H, C 1 -C 22 straight or branched alkyl or alkylhalide, or phenyl or substituted phenyl, and n is 10 to 12,000. Methods of making poly(vinyl ester) block copolymers, including reversible-addition fragmentation chain transfer, organobismuthine-mediated living radical polymerization, and cobalt mediated radical polymerization. Chemically-degradable and biodegradable polymers comprising poly(vinyl ester) block copolymers.
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸 麦撒奎 鹅膏氨酸 鹅膏氨酸 鸦胆子酸A甲酯 鸦胆子酸A 鸟氨酸缩合物