Enzyme-mediated modifications at the wobble position of tRNAs are essential for the translation of the genetic code. We report the genetic, biochemical and structural characterization of CmoB, the enzyme that recognizes the unique metabolite carboxy-S-adenosine-L-methionine (Cx-SAM) and catalyzes a carboxymethyl transfer reaction resulting in formation of 5-oxyacetyluridine at the wobble position of tRNAs. CmoB is distinctive in that it is the only known member of the SAM-dependent methyltransferase (SDMT) superfamily that utilizes a naturally occurring SAM analog as the alkyl donor to fulfill a biologically meaningful function. Biochemical and genetic studies define the in vitro and in vivo selectivity for Cx-SAM as alkyl donor over the vastly more abundant SAM. Complementary high-resolution structures of the apo- and Cx-SAM bound CmoB reveal the determinants responsible for this remarkable discrimination. Together, these studies provide mechanistic insight into the enzymatic and non-enzymatic feature of this alkyl transfer reaction which affords the broadened specificity required for tRNAs to recognize multiple synonymous codons.
在tRNA的摇摆位置上,酶介导的修饰对于遗传密码的翻译至关重要。我们报告了CmoB的遗传、
生物化学和结构特征,这种酶能够识别独特的代谢产物羧基-S-
腺嘌呤-
L-蛋氨酸(Cx-S
AM),并催化羧甲基转移反应,在tRNA的摇摆位置上形成5-氧代乙酰
尿苷。CmoB的独特之处在于它是已知唯一利用天然存在的S
AM类似物作为烷基供体来发挥
生物学意义的S
AM依赖性甲基转移酶(S
DMT)超家族成员。
生物化学和遗传学研究确定了Cx-S
AM作为烷基供体在体外和体内对大量S
AM的选择性。结合高分辨率结构,无
配体和Cx-S
AM结合的CmoB揭示了这种显著差异的决定因素。这些研究共同提供了这种烷基转移反应的酶和非酶特性的机理,该反应为tRNA识别多个同义密码子提供了所需的更广泛的特异性。