Novel anthraquinone derivatives with redox-active functional groups capable of producing free radicals by metabolism: are free radicals essential for cytotoxicity?
The mode of action of antitumour anthraquinone derivatives (i.e. mitoxantrone) is not clearly established yet. It includes, among others, intercalation and binding to DNA, bioreduction and aerobic redox cycling. A series of anthraquinone derivatives, with potentially bioreducible groups sited in the side chain, have been synthesized and biologically evaluated. Their redox and cytotoxic activities were screened. Derivatives which bear a 2-(dimethylamino)ethylamino substituent, known to confer high DNA affinity, demonstrated cytotoxicity but not redox activity (beside the anthraquinone reduction). Conversely, derivatives which showed redox activity were not cytotoxic toward the P388 cell line. The results suggest that bioreduction is not the main mode of action in the cytotoxicity of anthraquinones. (C) 1999 Editions scientifiques et medicales Elsevier SAS.
A new anthraquinoid ligand for the iron-catalyzed hydrosilylation of carbonyl compounds at room temperature: new insights and kinetics
anthraquinoid-based iron(II) complex active in the hydrosilylations of carbonyls. The new complex Fe(2)2 was characterized by single-crystal X-ray diffraction, infrared spectroscopy, NMR, and high resolution mass spectrometry (electrospray ionization). Superconducting quantum interference device (SQUID) magnetometry established no spin crossover behavior with an S = 2 state at room temperature. This complex was determined