4,5-Dihydro-1H-pyrazole Derivatives with Inhibitory nNOS Activity in Rat Brain: Synthesis and Structure−Activity Relationships
摘要:
In an attempt to find new compounds with neuroprotective activity, we have designed, synthesized and characterized 19 new nNOS inhibitors with a 4,5-dihydro-1H-pyrazole structure. Compounds 11r [1-cyclopropanecarbonyl-3-(2-amino-5-chlorophenyl)-4,5-dihydro-1H-pyrazole] and He [1-cyclopropanecarbonyl-3-(2-amino-5-methoxyphenyl)- 4,5-dihydro-1H-pyrazole] show the highest activities with inhibition percentages of 70% and 62%, respectively. A structure-activity relationship for the nNOS inhibition can be established from the structural comparison of these new pyrazole derivatives and the described synthetic kynurenines 10.
4,5-Dihydro-1H-pyrazole Derivatives with Inhibitory nNOS Activity in Rat Brain: Synthesis and Structure−Activity Relationships
摘要:
In an attempt to find new compounds with neuroprotective activity, we have designed, synthesized and characterized 19 new nNOS inhibitors with a 4,5-dihydro-1H-pyrazole structure. Compounds 11r [1-cyclopropanecarbonyl-3-(2-amino-5-chlorophenyl)-4,5-dihydro-1H-pyrazole] and He [1-cyclopropanecarbonyl-3-(2-amino-5-methoxyphenyl)- 4,5-dihydro-1H-pyrazole] show the highest activities with inhibition percentages of 70% and 62%, respectively. A structure-activity relationship for the nNOS inhibition can be established from the structural comparison of these new pyrazole derivatives and the described synthetic kynurenines 10.
4,5-Dihydro-1<i>H-</i>pyrazole Derivatives with Inhibitory nNOS Activity in Rat Brain: Synthesis and Structure−Activity Relationships
作者:M. Encarnación Camacho、Josefa León、Antonio Entrena、Guillermo Velasco、M. Dora Carrión、Germaine Escames、Antonio Vivó、Darío Acuña-Castroviejo、Miguel A. Gallo、Antonio Espinosa
DOI:10.1021/jm0407714
日期:2004.11.1
In an attempt to find new compounds with neuroprotective activity, we have designed, synthesized and characterized 19 new nNOS inhibitors with a 4,5-dihydro-1H-pyrazole structure. Compounds 11r [1-cyclopropanecarbonyl-3-(2-amino-5-chlorophenyl)-4,5-dihydro-1H-pyrazole] and He [1-cyclopropanecarbonyl-3-(2-amino-5-methoxyphenyl)- 4,5-dihydro-1H-pyrazole] show the highest activities with inhibition percentages of 70% and 62%, respectively. A structure-activity relationship for the nNOS inhibition can be established from the structural comparison of these new pyrazole derivatives and the described synthetic kynurenines 10.