摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

4-undecanoyloxy-6-methoxy-(2H)-1,4-benzoxazin-3(4H)-one

中文名称
——
中文别名
——
英文名称
4-undecanoyloxy-6-methoxy-(2H)-1,4-benzoxazin-3(4H)-one
英文别名
(6-Methoxy-3-oxo-1,4-benzoxazin-4-yl) undecanoate
4-undecanoyloxy-6-methoxy-(2H)-1,4-benzoxazin-3(4H)-one化学式
CAS
——
化学式
C20H29NO5
mdl
——
分子量
363.454
InChiKey
QRSJFNXVNYSFFN-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    5.7
  • 重原子数:
    26
  • 可旋转键数:
    12
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.6
  • 拓扑面积:
    65.1
  • 氢给体数:
    0
  • 氢受体数:
    5

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    描述:
    十一烷酸吡啶氯化亚砜 作用下, 以 四氢呋喃 为溶剂, 反应 16.0h, 生成 4-undecanoyloxy-6-methoxy-(2H)-1,4-benzoxazin-3(4H)-one
    参考文献:
    名称:
    Optimization of Benzoxazinones as Natural Herbicide Models by Lipophilicity Enhancement
    摘要:
    Benzoxazinones are plant allelochemicals well-known for their phytotoxic activity and for taking part in the defense strategies of Gramineae, Ranunculaceae, and Scrophulariceae plants. These properties, in addition to the recently optimized methodologies for their large-scale isolation and synthesis, have made some derivatives of natural products, 2,4-dihydroxy-(2H)-1,4-benzoxazin-3-(4H)-one (DIBOA) and its 7-methoxy analogue ( DIMBOA), successful templates in the search for natural herbicide models. These new chemicals should be part of integrated methodologies for weed control. In ongoing research about the structure-activity relationships of benzoxazinones and the structural requirements for their phytotoxicity enhancement and after characterization of the optimal structural features, a new generation of chemicals with enhanced lipophilicity was developed. They were tested on selected standard target species and weeds in the search for the optimal aqueous solubility-lipophilicity rate for phytotoxicity. This physical parameter is known to be crucial in modern drug and agrochemical design strategies. The new compounds obtained in this way had interesting phytotoxicity profiles, empowering the phytotoxic effect of the starting benzoxazinone template in some cases. Quantitative structure-activity relationships were obtained by bioactivity-molecular parameters correlations. Because optimal lipophilicity values for phytotoxicity vary with the tested plant, these new derivatives constitute a more selective way to take advantage of benzoxazinone phytotoxic capabilities.
    DOI:
    10.1021/jf062168v
点击查看最新优质反应信息

文献信息

  • Optimization of Benzoxazinones as Natural Herbicide Models by Lipophilicity Enhancement
    作者:Francisco A. Macías、David Marín、Alberto Oliveros-Bastidas、José M. G. Molinillo
    DOI:10.1021/jf062168v
    日期:2006.12.1
    Benzoxazinones are plant allelochemicals well-known for their phytotoxic activity and for taking part in the defense strategies of Gramineae, Ranunculaceae, and Scrophulariceae plants. These properties, in addition to the recently optimized methodologies for their large-scale isolation and synthesis, have made some derivatives of natural products, 2,4-dihydroxy-(2H)-1,4-benzoxazin-3-(4H)-one (DIBOA) and its 7-methoxy analogue ( DIMBOA), successful templates in the search for natural herbicide models. These new chemicals should be part of integrated methodologies for weed control. In ongoing research about the structure-activity relationships of benzoxazinones and the structural requirements for their phytotoxicity enhancement and after characterization of the optimal structural features, a new generation of chemicals with enhanced lipophilicity was developed. They were tested on selected standard target species and weeds in the search for the optimal aqueous solubility-lipophilicity rate for phytotoxicity. This physical parameter is known to be crucial in modern drug and agrochemical design strategies. The new compounds obtained in this way had interesting phytotoxicity profiles, empowering the phytotoxic effect of the starting benzoxazinone template in some cases. Quantitative structure-activity relationships were obtained by bioactivity-molecular parameters correlations. Because optimal lipophilicity values for phytotoxicity vary with the tested plant, these new derivatives constitute a more selective way to take advantage of benzoxazinone phytotoxic capabilities.
查看更多