Aerobic C(sp2)–H Hydroxylations of 2-Aryloxazolines: Fast Access to Excited-State Intramolecular Proton Transfer (ESIPT)-Based Luminophores
摘要:
The direct hydroxylation of 2-aryloxazolines via a deprotonative magnesiation using TMPMgCl center dot LiCl and subsequent oxidation with molecular oxygen or air as a green oxidant is reported. This method proceeds under mild conditions at room temperature with high regioselectivity and chemoselectivity. The obtained phenols exhibit tunable luminescence properties, induced by excited-state intramolecular proton transfer. This method opens a new opportunity for the sustainable synthesis of luminescent organic molecules.
Anthryl-Substituted Heterocycles as Acid-Sensitive Fluorescence Probes
摘要:
Four pH-sensitive fluorescence probes are presented which consist of an anthracene fluorophore and a pi-conjugated oxazoline, benzoxazole, or pyridine substituent. The protonation of the heterocycles increases their acceptor properties and results in significant red-shifts of the absorption and emission maxima of the anthracene chromophore. The comparison between 2-[2'-(6'-methoxy-anthryl)]-4,4-dimethyl-2-oxazoline and 2-[2'-(anthryl)]-4,4-dimethyl-2-oxazoline reveals that the donor-acceptor substitution pattern of the fluorophore is not required to achieve a red shift upon protonation. The benzoxazole and pyridine substituents offer a particular advantage due to their persistence under acidic conditions. Thus, these compounds may be used as efficient pH-sensitive fluorescence switches. Nevertheless, the switching of benzoxazole 2c requires relatively strong acidic conditions. The anthrylpyridinium exhibits a red-shifted emission in chloroform; however, it is nonfluorescent in aqueous or alcoholic solution. Although the oxazoline is not persistent under permanent acidic conditions, this heterocycle may be useful as a substituent in fluorescence indicators since it may be used to detect acid concentrations of 10(-4)-10(-5) M, which are close to the biologically relevant range.
Aerobic C(sp<sup>2</sup>)–H Hydroxylations of 2-Aryloxazolines: Fast Access to Excited-State Intramolecular Proton Transfer (ESIPT)-Based Luminophores
作者:Dominik Göbel、Nils Clamor、Enno Lork、Boris J. Nachtsheim
DOI:10.1021/acs.orglett.9b01350
日期:2019.7.19
The direct hydroxylation of 2-aryloxazolines via a deprotonative magnesiation using TMPMgCl center dot LiCl and subsequent oxidation with molecular oxygen or air as a green oxidant is reported. This method proceeds under mild conditions at room temperature with high regioselectivity and chemoselectivity. The obtained phenols exhibit tunable luminescence properties, induced by excited-state intramolecular proton transfer. This method opens a new opportunity for the sustainable synthesis of luminescent organic molecules.
Anthryl-Substituted Heterocycles as Acid-Sensitive Fluorescence Probes
Four pH-sensitive fluorescence probes are presented which consist of an anthracene fluorophore and a pi-conjugated oxazoline, benzoxazole, or pyridine substituent. The protonation of the heterocycles increases their acceptor properties and results in significant red-shifts of the absorption and emission maxima of the anthracene chromophore. The comparison between 2-[2'-(6'-methoxy-anthryl)]-4,4-dimethyl-2-oxazoline and 2-[2'-(anthryl)]-4,4-dimethyl-2-oxazoline reveals that the donor-acceptor substitution pattern of the fluorophore is not required to achieve a red shift upon protonation. The benzoxazole and pyridine substituents offer a particular advantage due to their persistence under acidic conditions. Thus, these compounds may be used as efficient pH-sensitive fluorescence switches. Nevertheless, the switching of benzoxazole 2c requires relatively strong acidic conditions. The anthrylpyridinium exhibits a red-shifted emission in chloroform; however, it is nonfluorescent in aqueous or alcoholic solution. Although the oxazoline is not persistent under permanent acidic conditions, this heterocycle may be useful as a substituent in fluorescence indicators since it may be used to detect acid concentrations of 10(-4)-10(-5) M, which are close to the biologically relevant range.