摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(2S)-2-氨基-5-[[(2R)-2-氨基-3-(2-氯乙基硫基)丙酰]-(羧甲基)氨基]-5-氧代戊酸 | 75607-61-3

中文名称
(2S)-2-氨基-5-[[(2R)-2-氨基-3-(2-氯乙基硫基)丙酰]-(羧甲基)氨基]-5-氧代戊酸
中文别名
——
英文名称
S-(2-chloroethyl)glutathione
英文别名
(2S)-2-amino-5-[[(2R)-1-(carboxymethylamino)-3-(2-chloroethylsulfanyl)-1-oxopropan-2-yl]amino]-5-oxopentanoic acid
(2S)-2-氨基-5-[[(2R)-2-氨基-3-(2-氯乙基硫基)丙酰]-(羧甲基)氨基]-5-氧代戊酸化学式
CAS
75607-61-3
化学式
C12H20ClN3O6S
mdl
——
分子量
369.826
InChiKey
KJTFFUUCBPMUPH-YUMQZZPRSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -3.5
  • 重原子数:
    23
  • 可旋转键数:
    12
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.67
  • 拓扑面积:
    184
  • 氢给体数:
    5
  • 氢受体数:
    8

SDS

SDS:a23ef9364bc6a37a36f8782417b02000
查看

反应信息

  • 作为反应物:
    描述:
    H-Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly-NH2(2S)-2-氨基-5-[[(2R)-2-氨基-3-(2-氯乙基硫基)丙酰]-(羧甲基)氨基]-5-氧代戊酸 在 ammonium bicarbonate 作用下, 以 为溶剂, 反应 1.5h, 生成 、 、
    参考文献:
    名称:
    S-(2-氯乙基)谷胱甘肽将催产素烷基化,并通过串联质谱和Edman降解表征加合物。
    摘要:
    S-(2-氯乙基)谷胱甘肽(CEG)是由谷胱甘肽与1,2-二氯乙烷(DCE)共轭形成的烷基化剂,能够将DNA和蛋白质烷基化。作为鉴定特定蛋白质烷基化位点的前奏,通过CEG将肽催产素烷基化,并使用串联质谱法鉴定烷基化位点。发现还原的催产素的烷基化可导致单加合物,双加合物和三加合物,并且串联质谱法从(A-Cys-1)分离出了(S- [2-(Cys1)乙基]谷胱甘肽)催产素(单加合物Cys-1)。 (S- [2-(Cys1,6)乙基]谷胱甘肽)催产素(单加合物Cys-6)。对于(S- [2-(Cys1,6)乙基]谷胱甘肽)催产素(双加合物)和单酯,使用手动Edman降解消除了Tyr-2而不是Cys-1发生烷基化的可能性。 -加合物Cys-1。还鉴定了由Cys-6上的烷基化和通过Cys-1形成二硫键的单加合物同二聚体。氧化的催产素形成了两个次要的加合物,占反应混合物中催产素的不到5%。这些发现表明
    DOI:
    10.1021/tx00045a013
  • 作为产物:
    参考文献:
    名称:
    Conjugation of Haloalkanes by Bacterial and Mammalian Glutathione Transferases:  Mono- and Vicinal Dihaloethanes
    摘要:
    Glutathione (GSH) transferases are generally involved in the detoxication of xenobiotic chemicals. However, conjugation can also activate compounds and result in DNA modification. Activation of 1,2-dihaloethanes (BrCH2CH2Br, BrCH2CH2Cl, and ClCH2CH2Cl) was investigated using two mammalian theta class GSH transferases (rat GST 5-5 and human GST T1) and a bacterial dichloromethane dehalogenase (DM11). Although the literature suggests that the bacterial dehalogenase does not catalyze reactions with CH3Cl, ClCH2CH2Cl, or CH3CHCl2, we found a higher enzyme efficiency for DM11 than for the mammalian GSH transferases in conjugating CH3Cl, CH3CH2Cl, and CH3CH2Br. Enzymatic rates of activation of 1,2-dihaloethanes were determined in vitro by measuring S,S-ethylene-bis-GSH, the major product trapped by nonenzymatic reaction with the substrate GSH. Salmonella typhimurium TA 1535 systems expressing each of these GSH transferases were used to determine mutagenicity. Rates of formation of S,S-ethylene-bis-GSH by the GSH transferases correlated with the mutagenicity determined in the reversion assays for the three 1,2-dihaloethanes, consistent with the view that half-mustards are the mutagenic products of the GSH transferase reactions. Half-mustards [S-(2-haloethyl)GSH] containing either F, Cl, or Br (as the leaving group) were tested for their abilities to induce revertants in S. typhimurium, and rates of hydrolysis were also determined. GSH transferases do not appear to be involved in the breakdown of the half-mustard intermediates. A halide order (Br > Cl) was observed for both GSH transferase-catalyzed mutagenicity and S,S-ethylene-bis-GSH formation from 1,2-dihaloethanes, with the single exception (both assays) of BrCH2CH2Cl reaction with DM11, which was unexpectedly high. The lack of substrate saturation seen for conjugation of dihalomethanes with GSTs 5-5 and T1 was also observed with the mono- and 1,2-dihaloethanes [Wheeler, J. B., Stourman, N. V., Thier, R., Dommermuth, A., Vuilleumier, S., Rose, J. A., Armstrong, R. N., and Guengerich, F. P. (2001) Chem. Res. Toxicol. 14, 1118-1127], indicative of an inherent difference in the catalytic mechanisms of the bacterial and mammalian GSH transferases.
    DOI:
    10.1021/tx0100183
点击查看最新优质反应信息

文献信息

  • Alkylation of Oxytocin by S-(2-Chloroethyl)glutathione and Characterization of Adducts by Tandem Mass Spectrometry and Edman Degradation
    作者:John C. L. Erve、Max L. Deinzer、Donald J. Reed
    DOI:10.1021/tx00045a013
    日期:1995.4
    (DCE), is able to alkylate DNA and proteins. As a prelude to identification of specific protein alkylation sites, the peptide oxytocin was alkylated by CEG, and tandem mass spectrometry was used to identify the alkylation sites. It was found that mono-, bis-, and tris-adducts can result from alkylation of reduced oxytocin and that tandem mass spectrometry differentiated (S-[2-(Cys1)ethyl]glutathione)oxytocin
    S-(2-氯乙基)谷胱甘肽(CEG)是由谷胱甘肽与1,2-二氯乙烷(DCE)共轭形成的烷基化剂,能够将DNA和蛋白质烷基化。作为鉴定特定蛋白质烷基化位点的前奏,通过CEG将肽催产素烷基化,并使用串联质谱法鉴定烷基化位点。发现还原的催产素的烷基化可导致单加合物,双加合物和三加合物,并且串联质谱法从(A-Cys-1)分离出了(S- [2-(Cys1)乙基]谷胱甘肽)催产素(单加合物Cys-1)。 (S- [2-(Cys1,6)乙基]谷胱甘肽)催产素(单加合物Cys-6)。对于(S- [2-(Cys1,6)乙基]谷胱甘肽)催产素(双加合物)和单酯,使用手动Edman降解消除了Tyr-2而不是Cys-1发生烷基化的可能性。 -加合物Cys-1。还鉴定了由Cys-6上的烷基化和通过Cys-1形成二硫键的单加合物同二聚体。氧化的催产素形成了两个次要的加合物,占反应混合物中催产素的不到5%。这些发现表明
  • Conjugation of Haloalkanes by Bacterial and Mammalian Glutathione Transferases:  Mono- and Vicinal Dihaloethanes
    作者:James B. Wheeler、Nina V. Stourman、Richard N. Armstrong、F. Peter Guengerich
    DOI:10.1021/tx0100183
    日期:2001.8.1
    Glutathione (GSH) transferases are generally involved in the detoxication of xenobiotic chemicals. However, conjugation can also activate compounds and result in DNA modification. Activation of 1,2-dihaloethanes (BrCH2CH2Br, BrCH2CH2Cl, and ClCH2CH2Cl) was investigated using two mammalian theta class GSH transferases (rat GST 5-5 and human GST T1) and a bacterial dichloromethane dehalogenase (DM11). Although the literature suggests that the bacterial dehalogenase does not catalyze reactions with CH3Cl, ClCH2CH2Cl, or CH3CHCl2, we found a higher enzyme efficiency for DM11 than for the mammalian GSH transferases in conjugating CH3Cl, CH3CH2Cl, and CH3CH2Br. Enzymatic rates of activation of 1,2-dihaloethanes were determined in vitro by measuring S,S-ethylene-bis-GSH, the major product trapped by nonenzymatic reaction with the substrate GSH. Salmonella typhimurium TA 1535 systems expressing each of these GSH transferases were used to determine mutagenicity. Rates of formation of S,S-ethylene-bis-GSH by the GSH transferases correlated with the mutagenicity determined in the reversion assays for the three 1,2-dihaloethanes, consistent with the view that half-mustards are the mutagenic products of the GSH transferase reactions. Half-mustards [S-(2-haloethyl)GSH] containing either F, Cl, or Br (as the leaving group) were tested for their abilities to induce revertants in S. typhimurium, and rates of hydrolysis were also determined. GSH transferases do not appear to be involved in the breakdown of the half-mustard intermediates. A halide order (Br > Cl) was observed for both GSH transferase-catalyzed mutagenicity and S,S-ethylene-bis-GSH formation from 1,2-dihaloethanes, with the single exception (both assays) of BrCH2CH2Cl reaction with DM11, which was unexpectedly high. The lack of substrate saturation seen for conjugation of dihalomethanes with GSTs 5-5 and T1 was also observed with the mono- and 1,2-dihaloethanes [Wheeler, J. B., Stourman, N. V., Thier, R., Dommermuth, A., Vuilleumier, S., Rose, J. A., Armstrong, R. N., and Guengerich, F. P. (2001) Chem. Res. Toxicol. 14, 1118-1127], indicative of an inherent difference in the catalytic mechanisms of the bacterial and mammalian GSH transferases.
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸 麦撒奎 鹅膏氨酸 鹅膏氨酸 鸦胆子酸A甲酯 鸦胆子酸A 鸟氨酸缩合物