Incorporation of proquinoidal BTD building blocks into conjugated porphyrin oligomers minimizes the extent of excited-state structural relaxation relative to the ground-state conformation, elucidating new classes of impressive NIR fluorophores.
A design strategy for (porphinato)zinc-based fluorophores that possess large near infrared fluorescence quantum yields is described. These fluorophores are based on a (5,15-diethynylporphinato)zinc(II) framework and feature symmetric donor or acceptor units appended at the meso-ethynyl positions via benzo[c][1,2,5]thiadiazole moieties. These (5,15-bis(benzo[c][1′,2′,5′]thiadiazol-4′-ylethynyl)-10,20-bis[2′,6′-bis(3″,3″-dimethyl-1″-butyloxy)phenyl]porphinato)zinc(II) (4), (5,15-bis[4′-(N,N-dihexylamino) benzo[c][1′,2′,5′]thiadiazol-7′-ylethynyl]-10,20-bis[2′,6′-bis(3″,3″-dimethyl-1″-butyloxy)phenyl]porphinato)zinc(II) (5), (5,15-bis([7′-(4″-n-dodecyloxyphenylethynyl)benzo[c][1′,2′,5′]thiadiazol-4′-yl]ethynyl)-10,20-bis[2′,6′-bis(3″,3″-dimethyl-1″-butyloxy)phenyl]porphinato)zinc(II) (6), (5,15-bis([7′-([7″-(4″ ′-n-dodecyloxyphenyl)benzo[c][1″,2″,5″]thiadiazol-4″-yl]ethynyl)benzo[c][1′,2′,5′]thiadiazol-4′-yl]ethynyl)-10,20-bis[2′,6′-bis(3″,3″-dimethyl-1″-butyloxy)phenyl]porphinato)zinc(II) (7), 5,15-bis ([7′-(4″-N,N-dihexylaminophenylethynyl)benzo[c][1′,2′,5′]thiadiazol-4′-yl]ethynyl)-10,20-bis[2′,6′-bis(3″,3″-dimethyl-1″-butyloxy)phenyl]porphinato)zinc(II) (8), and (5,15-bis([7′-(4″-N,N-dihexylaminophenylethenyl)benzo[c][1′,2′,5′]thiadiazol-4′-yl]ethynyl)-10,20-bis[2′,6′-bis(3″,3″-dimethyl-1″-butyloxy)phenyl]porphinato)zinc(II) (9) chromophores possess red-shifted absorption and emission bands that range between 650 and 750 nm that bear distinct similarities to those of the chlorophylls and structurally related molecules. Interestingly, the measured radiative decay rate constants for these emitters track with the integrated oscillator strengths of their respective x-polarized Q-band absorptions, and thus define an unusual family of high quantum yield near infrared fluorophores in which emission intensity is governed by a simple Strickler–Berg dependence.