Facile and Efficient Synthesis of Benzoxazoles and Benzimidazoles: The Application of Hantzsch Ester 1,4-Dihydropyridines in Reductive Cyclization Reactions
Both benzoxazole and benzimidazole are common heterocyclic scaffolds in biologically active and medicinally significant compounds. Reductivecyclization of ortho-substituted nitrobenzene derivatives provides an attractive route to benzoxazole or benzimidazole ring formation. Unfortunately, only a few synthetic methods by reductivecyclization of ortho-nitro compounds have been reported and the yields
In this study, a series of twenty-two ring-substituted naphthalene-1-carboxanilides were prepared and characterized. Primary in vitro screening of the synthesized carboxanilides was performed against Mycobacterium avium subsp. paratuberculosis. N-(2-Methoxyphenyl)naphthalene-1-carboxamide, N-(3-methoxy-phenyl)naphthalene-1-carboxamide, N-(3-methylphenyl)naphthalene-1-carboxamide, N-(4-methylphenyl)naphthalene-1-carboxamide and N-(3-fluorophenyl)naphthalene-1-carboxamide showed against M. avium subsp. paratuberculosis two-fold higher activity than rifampicin and three-fold higher activity than ciprofloxacin. The most effective antimycobacterial compounds demonstrated insignificant toxicity against the human monocytic leukemia THP-1 cell line. The testing of biological activity of the compounds was completed with the study of photosynthetic electron transport (PET) inhibition in isolated spinach (Spinacia oleracea L.) chloroplasts. The PET-inhibiting activity expressed by IC50 value of the most active compound N-[4-(trifluoromethyl)phenyl]naphthalene-1-carboxamide was 59 μmol/L. The structure-activity relationships are discussed.