摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

Ti(Ph)(OSi-t-Bu3)2(NHSi-t-Bu3) | 197173-79-8

中文名称
——
中文别名
——
英文名称
Ti(Ph)(OSi-t-Bu3)2(NHSi-t-Bu3)
英文别名
——
Ti(Ph)(OSi-t-Bu3)2(NHSi-t-Bu3)化学式
CAS
197173-79-8
化学式
C42H87NO2Si3Ti
mdl
——
分子量
770.295
InChiKey
NKKJLUXAKGZITC-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    14.25
  • 重原子数:
    49
  • 可旋转键数:
    9
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.86
  • 拓扑面积:
    47.1
  • 氢给体数:
    1
  • 氢受体数:
    3

反应信息

  • 作为反应物:
    描述:
    Ti(Ph)(OSi-t-Bu3)2(NHSi-t-Bu3)环己烷 为溶剂, 生成
    参考文献:
    名称:
    Selectivities in Hydrocarbon Activation:  Kinetic and Thermodynamic Investigations of Reversible 1,2-RH-Elimination from (silox)2(tBu3SiNH)TiR (silox = tBu3SiO)
    摘要:
    Addition of 2.0 equiv of Na(silox) to TiCl4(THF)(2) afforded (silox)(2)TiCl2 (1), which yielded (silox)(2)((Bu3SiNH)-Bu-t)TiCl (2-Cl) upon treatment with (Bu3SiNLi)-Bu-t. Grignard or alkyllithium additions to 2-Cl or 1,2-RH-addition to transient (silox)(2)Ti=(NSiBu3)-Bu-t (3) produced (silox)(2)((Bu3SiNH)-Bu-t)TiR (2-R; R = Me, Et, CH2Ph = Bz, CH=CH2 = Vy, Bu-c, Bu-n, Ph, H, Pr-c, (c)Pe, CH2-3,5-Me2C6H3 = Mes, (neo)Hex, (c)Hex, eta(3)-H2CHCH2, eta(3)-H2CCHCHMe). Insertions of C2H4, butadiene, HC2H, and (HC2Bu)-Bu-t into the titanium-hydride bond of 2-H generated (silox)(2)((Bu3SiNH)-Bu-t)TiR (2-R; R = Et, eta(3)-H2CCHCHMe, Vy, E-CH=(CHBu)-Bu-t). Trapping of 3 by donors L afforded (silox)(2)LTi=(NSiBu3)-Bu-t (3-L; L = OEt2, THF (X-ray, two independent molecules: d(Ti=N) = 1.772(3), 1.783(3) Angstrom), py, PMe3, NMe3, NEt3) and metallacycles (silox)(2)((Bu3SiN)-Bu-t)TiCR=CR' (3-RC2R'; RC2R' = HC2H, MeC2Me, EtC2Et, (HC2Bu)-Bu-t) and (silox)(2)((Bu3SiN)-Bu-t)TiCH2CH2 (3-C2H4). Kinetics of 1,2-RH-elimination from 2-R revealed a first-order process (24.8 degrees C): R = Bz < Mes < H < Me (1.54(10) x 10(-5) s(-1)) < (neo)Hex < Et < Bu-n < Bu-c < (c)Pe < (c)Hex < Pr-c < Vy < Ph. Kinetics data, large 1,2-RH/D-elimination KIE's (e.g., MeH/D, 13.7(9), 24.8 degrees C), and Eyring parameters (e.g., 2-Me, Delta H double dagger = 20.2(12) kcal/mol, Delta S double dagger = -12(4) eu) portray a four-center, concerted transition state when the N ... H ... R linkage is nearly linear. Equilibrium measurements led to the following relative standard free energy scale: 2-(c)Hex > 2-(c)Pe > 2-Pr-n similar to 2-Bu-n > 2-(neo)Hex > 2-Et, 2-Bu-c > 2-CH2SiMe3 > 2-Ph > 2-Me > 2-Bz > 2-Pr-c similar to 2-Mes > 2-Vy > 3-C2H4 > 3-NEt3 > 2-H > 3-OEt2 > 3-EtC2Et > 3-MeC2Me > 3-THF > 3-NMe3 > 3-PMe3 > 3-py. A correlation of D(TiR)(rel) to D(RH) revealed greater differences in titanium-carbon bond energies. THF loss from 3-THF allowed a rough estimate of Delta G degrees(3). Using thermochemical cycles, relative activation energies for 1,2-RH-addition were assessed: (c)HexH > (c)PeH > (BuH)-Bu-n > (neo)HexH > EtH > BzH > (BuH)-Bu-c > MesH > MeH > PhH > (PrH)-Pr-c > VyH > 3-C2H4 formation > H-2. On the basis of a parabolic model, C-H bond activation selectivities are influenced by the relative ground state energies of 2-R and a parameter representing the reaction coordinate. A more compressed reaction coordinate for sp(2)- vs sp(3)-substrates eases their activation.
    DOI:
    10.1021/ja9707419
  • 作为产物:
    描述:
    Na(silox)乙醚 为溶剂, 生成 Ti(Ph)(OSi-t-Bu3)2(NHSi-t-Bu3)
    参考文献:
    名称:
    Selectivities in Hydrocarbon Activation:  Kinetic and Thermodynamic Investigations of Reversible 1,2-RH-Elimination from (silox)2(tBu3SiNH)TiR (silox = tBu3SiO)
    摘要:
    Addition of 2.0 equiv of Na(silox) to TiCl4(THF)(2) afforded (silox)(2)TiCl2 (1), which yielded (silox)(2)((Bu3SiNH)-Bu-t)TiCl (2-Cl) upon treatment with (Bu3SiNLi)-Bu-t. Grignard or alkyllithium additions to 2-Cl or 1,2-RH-addition to transient (silox)(2)Ti=(NSiBu3)-Bu-t (3) produced (silox)(2)((Bu3SiNH)-Bu-t)TiR (2-R; R = Me, Et, CH2Ph = Bz, CH=CH2 = Vy, Bu-c, Bu-n, Ph, H, Pr-c, (c)Pe, CH2-3,5-Me2C6H3 = Mes, (neo)Hex, (c)Hex, eta(3)-H2CHCH2, eta(3)-H2CCHCHMe). Insertions of C2H4, butadiene, HC2H, and (HC2Bu)-Bu-t into the titanium-hydride bond of 2-H generated (silox)(2)((Bu3SiNH)-Bu-t)TiR (2-R; R = Et, eta(3)-H2CCHCHMe, Vy, E-CH=(CHBu)-Bu-t). Trapping of 3 by donors L afforded (silox)(2)LTi=(NSiBu3)-Bu-t (3-L; L = OEt2, THF (X-ray, two independent molecules: d(Ti=N) = 1.772(3), 1.783(3) Angstrom), py, PMe3, NMe3, NEt3) and metallacycles (silox)(2)((Bu3SiN)-Bu-t)TiCR=CR' (3-RC2R'; RC2R' = HC2H, MeC2Me, EtC2Et, (HC2Bu)-Bu-t) and (silox)(2)((Bu3SiN)-Bu-t)TiCH2CH2 (3-C2H4). Kinetics of 1,2-RH-elimination from 2-R revealed a first-order process (24.8 degrees C): R = Bz < Mes < H < Me (1.54(10) x 10(-5) s(-1)) < (neo)Hex < Et < Bu-n < Bu-c < (c)Pe < (c)Hex < Pr-c < Vy < Ph. Kinetics data, large 1,2-RH/D-elimination KIE's (e.g., MeH/D, 13.7(9), 24.8 degrees C), and Eyring parameters (e.g., 2-Me, Delta H double dagger = 20.2(12) kcal/mol, Delta S double dagger = -12(4) eu) portray a four-center, concerted transition state when the N ... H ... R linkage is nearly linear. Equilibrium measurements led to the following relative standard free energy scale: 2-(c)Hex > 2-(c)Pe > 2-Pr-n similar to 2-Bu-n > 2-(neo)Hex > 2-Et, 2-Bu-c > 2-CH2SiMe3 > 2-Ph > 2-Me > 2-Bz > 2-Pr-c similar to 2-Mes > 2-Vy > 3-C2H4 > 3-NEt3 > 2-H > 3-OEt2 > 3-EtC2Et > 3-MeC2Me > 3-THF > 3-NMe3 > 3-PMe3 > 3-py. A correlation of D(TiR)(rel) to D(RH) revealed greater differences in titanium-carbon bond energies. THF loss from 3-THF allowed a rough estimate of Delta G degrees(3). Using thermochemical cycles, relative activation energies for 1,2-RH-addition were assessed: (c)HexH > (c)PeH > (BuH)-Bu-n > (neo)HexH > EtH > BzH > (BuH)-Bu-c > MesH > MeH > PhH > (PrH)-Pr-c > VyH > 3-C2H4 formation > H-2. On the basis of a parabolic model, C-H bond activation selectivities are influenced by the relative ground state energies of 2-R and a parameter representing the reaction coordinate. A more compressed reaction coordinate for sp(2)- vs sp(3)-substrates eases their activation.
    DOI:
    10.1021/ja9707419
点击查看最新优质反应信息

文献信息

  • Inter- and Intramolecular Experimental and Calculated Equilibrium Isotope Effects for (silox)<sub>2</sub>(<sup>t</sup>Bu<sub>3</sub>SiND)TiR + RH (silox = <sup>t</sup>Bu<sub>3</sub>SiO):  Inferred Kinetic Isotope Effects for RH/D Addition to Transient (silox)<sub>2</sub>TiNSi<sup>t</sup>Bu<sub>3</sub>
    作者:LeGrande M. Slaughter、Peter T. Wolczanski、Thomas R. Klinckman、Thomas R. Cundari
    DOI:10.1021/ja000112q
    日期:2000.8.23
    This article discusses inter- and intramolecular experimental and calculated equilibrium isotope effects.
    本文讨论了分子间和分子内实验和计算的平衡同位素效应。
  • Energetics of C-H Bond Activation and Ethylene Binding to d0 Transient (silox)2Ti:NSitBu3
    作者:Jordan L. Bennett、Peter T. Wolczanski
    DOI:10.1021/ja00084a082
    日期:1994.3
  • Selectivities in Hydrocarbon Activation:  Kinetic and Thermodynamic Investigations of Reversible 1,2-RH-Elimination from (silox)<sub>2</sub>(<sup>t</sup>Bu<sub>3</sub>SiNH)TiR (silox = <sup>t</sup>Bu<sub>3</sub>SiO)
    作者:Jordan L. Bennett、Peter T. Wolczanski
    DOI:10.1021/ja9707419
    日期:1997.11.1
    Addition of 2.0 equiv of Na(silox) to TiCl4(THF)(2) afforded (silox)(2)TiCl2 (1), which yielded (silox)(2)((Bu3SiNH)-Bu-t)TiCl (2-Cl) upon treatment with (Bu3SiNLi)-Bu-t. Grignard or alkyllithium additions to 2-Cl or 1,2-RH-addition to transient (silox)(2)Ti=(NSiBu3)-Bu-t (3) produced (silox)(2)((Bu3SiNH)-Bu-t)TiR (2-R; R = Me, Et, CH2Ph = Bz, CH=CH2 = Vy, Bu-c, Bu-n, Ph, H, Pr-c, (c)Pe, CH2-3,5-Me2C6H3 = Mes, (neo)Hex, (c)Hex, eta(3)-H2CHCH2, eta(3)-H2CCHCHMe). Insertions of C2H4, butadiene, HC2H, and (HC2Bu)-Bu-t into the titanium-hydride bond of 2-H generated (silox)(2)((Bu3SiNH)-Bu-t)TiR (2-R; R = Et, eta(3)-H2CCHCHMe, Vy, E-CH=(CHBu)-Bu-t). Trapping of 3 by donors L afforded (silox)(2)LTi=(NSiBu3)-Bu-t (3-L; L = OEt2, THF (X-ray, two independent molecules: d(Ti=N) = 1.772(3), 1.783(3) Angstrom), py, PMe3, NMe3, NEt3) and metallacycles (silox)(2)((Bu3SiN)-Bu-t)TiCR=CR' (3-RC2R'; RC2R' = HC2H, MeC2Me, EtC2Et, (HC2Bu)-Bu-t) and (silox)(2)((Bu3SiN)-Bu-t)TiCH2CH2 (3-C2H4). Kinetics of 1,2-RH-elimination from 2-R revealed a first-order process (24.8 degrees C): R = Bz < Mes < H < Me (1.54(10) x 10(-5) s(-1)) < (neo)Hex < Et < Bu-n < Bu-c < (c)Pe < (c)Hex < Pr-c < Vy < Ph. Kinetics data, large 1,2-RH/D-elimination KIE's (e.g., MeH/D, 13.7(9), 24.8 degrees C), and Eyring parameters (e.g., 2-Me, Delta H double dagger = 20.2(12) kcal/mol, Delta S double dagger = -12(4) eu) portray a four-center, concerted transition state when the N ... H ... R linkage is nearly linear. Equilibrium measurements led to the following relative standard free energy scale: 2-(c)Hex > 2-(c)Pe > 2-Pr-n similar to 2-Bu-n > 2-(neo)Hex > 2-Et, 2-Bu-c > 2-CH2SiMe3 > 2-Ph > 2-Me > 2-Bz > 2-Pr-c similar to 2-Mes > 2-Vy > 3-C2H4 > 3-NEt3 > 2-H > 3-OEt2 > 3-EtC2Et > 3-MeC2Me > 3-THF > 3-NMe3 > 3-PMe3 > 3-py. A correlation of D(TiR)(rel) to D(RH) revealed greater differences in titanium-carbon bond energies. THF loss from 3-THF allowed a rough estimate of Delta G degrees(3). Using thermochemical cycles, relative activation energies for 1,2-RH-addition were assessed: (c)HexH > (c)PeH > (BuH)-Bu-n > (neo)HexH > EtH > BzH > (BuH)-Bu-c > MesH > MeH > PhH > (PrH)-Pr-c > VyH > 3-C2H4 formation > H-2. On the basis of a parabolic model, C-H bond activation selectivities are influenced by the relative ground state energies of 2-R and a parameter representing the reaction coordinate. A more compressed reaction coordinate for sp(2)- vs sp(3)-substrates eases their activation.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐