Ni(COD)2/PCy3 Catalyzed Cross-Coupling of Aryl and Heteroaryl Neopentylglycolboronates with Aryl and Heteroaryl Mesylates and Sulfamates in THF at Room Temperature
摘要:
Reaction conditions for the Ni(COD)(2)/PCy3 catalyzed cross-coupling of aryl neopentylglycolboronates with aryl mesylates were developed. By using optimized reaction conditions, Ni(COD)(2)/PCy3 was shown to be a versatile catalyst for the cross-coupling of a diversity of aryl neopentylglycolboronates with aryl and heteroaryl mesylates and sulfamates containing both electron-donating and electron-withdrawing substituents in their para, ortho, and meta positions in THF at room temperature. This Ni-catalyzed cross-coupling of aryl neopentylglycolboronates is also effective for the synthesis of heterobiaryls and biaryls containing electrophilic functionalities sensitive to organolithium and organomagnesium derivatives. In combination with the recently developed Ni-catalyzed neopentylglycolborylation, all Ni-catalyzed routes to functional biaryls and heterobiaryls are now easily accessible.
Ni(COD)2/PCy3 Catalyzed Cross-Coupling of Aryl and Heteroaryl Neopentylglycolboronates with Aryl and Heteroaryl Mesylates and Sulfamates in THF at Room Temperature
摘要:
Reaction conditions for the Ni(COD)(2)/PCy3 catalyzed cross-coupling of aryl neopentylglycolboronates with aryl mesylates were developed. By using optimized reaction conditions, Ni(COD)(2)/PCy3 was shown to be a versatile catalyst for the cross-coupling of a diversity of aryl neopentylglycolboronates with aryl and heteroaryl mesylates and sulfamates containing both electron-donating and electron-withdrawing substituents in their para, ortho, and meta positions in THF at room temperature. This Ni-catalyzed cross-coupling of aryl neopentylglycolboronates is also effective for the synthesis of heterobiaryls and biaryls containing electrophilic functionalities sensitive to organolithium and organomagnesium derivatives. In combination with the recently developed Ni-catalyzed neopentylglycolborylation, all Ni-catalyzed routes to functional biaryls and heterobiaryls are now easily accessible.
<i>trans</i>-Chloro(1-Naphthyl)bis(triphenylphosphine)nickel(II)/PCy<sub>3</sub> Catalyzed Cross-Coupling of Aryl and Heteroaryl Neopentylglycolboronates with Aryl and Heteroaryl Mesylates and Sulfamates at Room Temperature
作者:Pawaret Leowanawat、Na Zhang、Mehtap Safi、David J. Hoffman、Miriam C. Fryberger、Aiswaria George、Virgil Percec
DOI:10.1021/jo3001194
日期:2012.3.16
been successfully applied as catalyst for the Suzuki–Miyaura cross-coupling of aryl and heteroaryl neopentylglycolboronates with aryl and heteroaryl mesylates and sulfamates in THF at room temperature. This cross-coupling reaction tolerates various functional groups, including keto, imino, ester, ether, and cyano. Together with the nickel-catalyzed, one-pot, two-step neopentylglycolborylation, this bench
Ni(COD)<sub>2</sub>/PCy<sub>3</sub> Catalyzed Cross-Coupling of Aryl and Heteroaryl Neopentylglycolboronates with Aryl and Heteroaryl Mesylates and Sulfamates in THF at Room Temperature
作者:Pawaret Leowanawat、Na Zhang、Ana-Maria Resmerita、Brad M. Rosen、Virgil Percec
DOI:10.1021/jo202037x
日期:2011.12.16
Reaction conditions for the Ni(COD)(2)/PCy3 catalyzed cross-coupling of aryl neopentylglycolboronates with aryl mesylates were developed. By using optimized reaction conditions, Ni(COD)(2)/PCy3 was shown to be a versatile catalyst for the cross-coupling of a diversity of aryl neopentylglycolboronates with aryl and heteroaryl mesylates and sulfamates containing both electron-donating and electron-withdrawing substituents in their para, ortho, and meta positions in THF at room temperature. This Ni-catalyzed cross-coupling of aryl neopentylglycolboronates is also effective for the synthesis of heterobiaryls and biaryls containing electrophilic functionalities sensitive to organolithium and organomagnesium derivatives. In combination with the recently developed Ni-catalyzed neopentylglycolborylation, all Ni-catalyzed routes to functional biaryls and heterobiaryls are now easily accessible.