Methods are described herein for converting carbocationically terminated polymers to anionically terminated polymers. These methods comprise: (a) providing a carbocationically terminated polymeric moiety; (b) reacting the carbocationically terminated polymeric moiety with a heterocyclic compound of the formula
where —X— is selected from —S—, —O—, —NH— and —NR—, and where R is an alkyl group or an aryl group, thereby providing an end-capped polymeric moiety; and (c) reacting the end-capped polymeric moiety with an organolithium compound to yield an anionically terminated polymeric moiety. Also described are block copolymers in which a first polymer block comprising cationically polymerized monomers is linked to a second polymer block comprising anionically polymerized monomers by a
group, as well as a polymer in which a polymer block comprising cationically polymerized monomers is linked to a halogenated silane residue or a carbosilane residue by a
group.
Methods are described herein for converting carbocationically terminated polymers to anionically terminated polymers. These methods comprise: (a) providing a carbocationically terminated polymeric moiety; (b) reacting the carbocationically terminated polymeric moiety with a heterocyclic compound of the formula
where —X— is selected from —S—, —O—, —NH— and —NR—, and where R is an alkyl group or an aryl group, thereby providing an end-capped polymeric moiety; and (c) reacting the end-capped polymeric moiety with an organolithium compound to yield an anionically terminated polymeric moiety. Also described are block copolymers in which a first polymer block comprising cationically polymerized monomers is linked to a second polymer block comprising anionically polymerized monomers by a
group, as well as a polymer in which a polymer block comprising cationically polymerized monomers is linked to a halogenated silane residue or a carbosilane residue by a
group.